PRINCIPLES OF CHEMISTRY A Molecular Approach

IRD EDITION

NIVALDO J. TRO

Main groups													Main	groups				
Г	1 A ^a 1		1															8A 18
1	1 H 1.008	2A 2			Metal	s	Me	talloids		Nonm	ietals		3A 13	4A 14	5A 15	6A 16	7A 17	2 He 4.003
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
-	6.94	9.012					Transitio	n metals					10.81	12.01	14.01	16.00	19.00	20.18
3	11 Na	12 Mg	3B	4B	5B	6B	7B		— 8B —	10	1B	2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
-	22.99	24.31	3	4	5	6	25	8	9	10	11	12	26.98	28.09	30.97	32.06	35.45	39.95
4	19 K	20 Ca	21	22 T:	23 V	24 Cr	25 Mn	26 Ea	27	28	29 Cr	30 7m	31 Ca	32 Ca	33	34 Sa	35 Ba	36 V.
4	N	Ca	44.06	11	V	52.00	54.94	FC EE OE	58.02	INI 58.60	Cu (2.55	Z II	Ga (0.72	Ge 72.62	AS	Se	DI	K r
ŀ	39.10	3.8	30	47.87	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.47	87.62	88.91	91.22	92.91	95.95	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
ľ	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[208.98]	[209.99]	[222.02]
	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117*	118
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		Fl		Lv		
L	[223.02]	[226.03]	[227.03]	[261.11]	[262.11]	[266.12]	[264.12]	[269.13]	[268.14]	[271]	[272]	[285]		[289]		[292]		
					58	59	60	61	62	63	64	65	66	67	68	69	70	71
		Lar	nthanide s	series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЪ	Dy	Ho	Er	Tm	Yb	Lu
					140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
					90	91	92	93	94	95	96	97	98	99	100	101	102	103
		Act	tinide seri	es	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
					232.04	231.04	238.03	[237.05]	[244.06]	[243.06]	[247.07]	[247.07]	[251.08]	[252.08]	[257.10]	[258.10]	[259.10]	[262.11]

^a The labels on top (1A, 2A, etc.) are common American usage. The labels below these (1, 2, etc.) are those recommended by the International Union of Pure and Applied Chemistry.

Atomic masses in brackets are the masses of the longest-lived or most important isotope of radioactive elements.

*Element 117 is currently under review by IUPAC.

List of Elements with Their Symbols and Atomic Masses

Atomic Mass 268.14^a 258.10^a 200.59 95.95 144.24 20.18 237.05^a 58.69 92.91 14.01 259.10^a 190.23 16.00 106.42 30.97 195.08 244.06^a 208.98^a 39.10 140.91 145^a 231.04 226.03ª 222.02^a 186.21 102.91 272^a 85.47 101.07 261.11^a 150.36 44.96 266.12^a 78.97 28.09 107.87 22.99 87.62 32.06 180.95 98^a 127.60 158.93 204.38 232.04 168.93 118.71 47.87 183.84 238.03 50.94 131.293 173.05 88.91 65.38 91.22 284^a 288^a

Element Symbol Number Atomic Mass Element Symbol Number Actinium Ac 89 227.03 ³ Methorium Mt 101 Atominum Al 13 26.98 Methorium Md 101 Armenicum An 95 243.06 ^a Metrury Hg 80 Artiniory S0 51 121.76 Molydehum Md 42 Argin Ar 18 39.95 Neodynium Nd 40 Assenic As 33 74.92 Neodynium Nd 40 Assenic At 85 209.99 ^a Neobium Nd 71 Barium Bd 56 137.33 Nicel Ni 72 Beronine Bf 57 10.81 Oorgjon N 77 Beronine Cd 40 112.41 Pholophorus P1 15 Cathium Cd 92 210.62			Atomic				Atomic
Acinatum Ac 89 227 03 ³ Metherium Mit 109 Aluminum Al 13 26 89 Mendelevium Mid 101 Americium An 95 243 06 ² Mendelevium Mid 101 Artinoroy Sb 51 121.76 Molybiderum Mol 420 Argan Ar 18 39 95 Neon Ne 103 Astaine As 33 74 92 Neon No 99 Barium Ba 56 137.33 Nickel Ni 010 Berdium Be 4 9.012 Nitrogen No 102 Bortine Br 35 10.81 Oxygen 0 8 Bortine Br 35 10.81 Oxygen 0 8 Caldrium Cd 40 112.41 Phosphorus Pi 75 Bortine Br 35 104.12 Porasphorus<	Element	Symbol	Number	Atomic Mass	Element	Symbol	Number
Auminian A 13 26.98 Mendelsvium Md 101 Americium Am 95 243.06 ² Mercury Hg 80 Antimory S0 51 121.76 Melydoenum Mo 42 Argen Ar 18 39.95 Neodynium No 40 Assenic At 85 209.99 ³ Neodynium No 40 Astatine At 85 209.99 ³ Neodynium No 78 Barkelium Bk 97 247.07 ² Nobium No 78 Berkelium Bk 97 244.12 ⁴ Osnium No 78 Bornon B 5 10.81 Osogen N 77 Bornum Cd 48 112.41 Plosphorus P 78 Caldorn Cd 10.08 Plotonum Pu 94 Caldorn Cd 251.12.91 Plosphorus Pi	Actinium	Ac	89	227 03ª	Meitnerium	Mt	109
Americium Am 95 243.08° Mercury Hg 80 Arithoroy SD 51 121.76 Molybderum Mol 60 Argen Ar 183<95	Aluminum	ΔI	13	26.98	Mendelevium	Md	101
Antinony So 51 121.78 Molybdenum Mol 42 Argen Ar 18 39.95 Neodymiun Nod 60 Assenic At 85 209.99 ² Neodymiun No 93 Barium Ba 66 137.33 Nickel Ni 28 Berkellum Bk 97 247.07 ² Niobium No 74 Berkellum Bk 97 247.07 ² Niobium No 71 Bismuth Bi 83 206.98 Nobelium No 76 Boron B 5 10.81 Oxygen O 8 Catioum Ca 20 40.08 Platinum Pu 78 Cationu Ca 55 12.21 Polasium Pu 78 Cationu Ca 27 58.93 Rodum Rodum Rodum Rodum Rodum Rodum Rodum Rodum Rodum	Americium	Δm	95	243.06ª	Mercury	Hø	80
Aragen Ar 18 39.55 Neodymium Ned 60 Arsenic As 33 74.92 Neon Ne 10 Astatine At 85 209.99 ^N Nethuinm Np 93 Barkin Ba 56 137.33 Nickel Ni 24 Berkelium Ba 56 10.73 Nicoburn No 72 Born Ba 5 10.81 Osrnium 0s 76 Bornin B 5 10.81 Osrnium 0s 76 Bornin Cd 48 12.241 Phosphorus Pd 15 Calforn Cd 20 40.08 Platnum Pd 46 Carbon Cd 12.04 Plotonium Pd 94 Carbon Cd 55 13.29.11 Plotonium Pd 91 Carbon Cd 17 35.45 Ploronethium Pd 91 <td>Antimony</td> <td>Sh</td> <td>51</td> <td>12176</td> <td>Molyhdenum</td> <td>Mo</td> <td>42</td>	Antimony	Sh	51	12176	Molyhdenum	Mo	42
Agenic A 10 25.05.0 New Mathematic New Mathematic Astaine At 85 20.99.9 ³ Neptunium Np 93 Barlium Ba 56 137.33 Nickel Ni 423 Berkellum Bk 97 247.07 ² Nitoburn Nb 41 Berkellum Bk 97 247.07 ² Nitoburn Nb 41 Berkellum Bk 32 208.98 Nobellum No 40 Boronine B 5 10.81 Oxygen 0 8 Bronine Br 35 79.90 Patkdium Pd 46 Californium Ca 20 40.06 Plathorn Pd 94 Californium Ca 55 132.91 Platseodymium Pd 84 Ceifurium Ca 27 58.93 Radum Ra 88 Copert Cu 27 58.93 Radum<	Argon	Δr	18	39.95	Neodymium	Nd	60
Actaine Ro Bo Procession No Participation No Participation Barkum Ba 56 137.33 Nickel Ni 93 Berkellum Ba 56 137.33 Nickel Ni 74 Berylinn Be 4 9.012 Nitrogen No 70 Bohrum Bi 81 206.99 Nobelinn No 70 Bohrum Bi 107 2264.12* Osmium No 70 Bohrum Cd 48 112.41 Phosphorus Pd 76 Caldium Cd 48 112.41 Phosphorus Pd 78 Calfornum Cf 98 251.08* Plutonium Pd 78 Calfornum Cf 58 142.01 Potassium R 79 Choring Cl 17 35.45 Promethum Pd 81 Corbin Co 27 5	Argonic	Δε	33	7/ 92	Neon	Ne	10
Pachano Pachano <t< td=""><td></td><td>Δt</td><td>85</td><td>200 00a</td><td>Nentunium</td><td>No</td><td>03</td></t<>		Δt	85	200 00a	Nentunium	No	03
Danum Da Do 12 AZ Nature Nature Nature Nature Berkelium Be 4 9.012 Nitrogen N 77 Bimuth Bi 83 208.98 Nobelium No 170 Bohrum Bh 107 2244.12* Osmium No 70 Bohrum Bh 107 2244.12* Osmium No 70 Bohrum Cd 48 112.41 Phosphorus Pd 46 Caldrum Cd 48 112.41 Phosphorus Pd 78 Caldrum Cd 68 140.12 Potassium K 19 Cathorn C 6 12.01 Potonium Pr 59 Caldrum Ca 24 52.00 Protacthium Pa 91 Cabiat Co 27 58.93 Radu Rado Rado Cobat Co 27 58.93 <	Barium	Ba	56	137 33	Nickel	Ni	28
Data and the servitism Data and the servitism <thdata and="" servitism<="" th="" the=""> Data and the servitism<!--</td--><td>Barkelium</td><td>Bk</td><td>97</td><td>247 07^a</td><td>Niohium</td><td>Nb</td><td>20 //1</td></thdata>	Barkelium	Bk	97	247 07 ^a	Niohium	Nb	20 //1
Larynan De H Loc H	Bervllium	Be	51 Л	9 012	Nitrogen	N	7
Dahnum Br Bot Bot </td <td>Bicmuth</td> <td>De</td> <td>4 92</td> <td>208.08</td> <td>Nobelium</td> <td>No</td> <td>102</td>	Bicmuth	De	4 92	208.08	Nobelium	No	102
Dammann Dr. 101 201 201 Contain Co. 103 Boron B 5 10.81 Oxgént O 8 Bronine Br 35 79.90 Palladium P 45 Californium Ca 20 40.08 Platinum Pt 78 Californium Ca 20 40.08 Platinum Pt 78 Californium Ca 6 12.01 Potospinum Pt 78 Cation C 6 12.01 Potasum Pt 79 Chorine Cl 17 35.45 Promethium Pn 61 Chorine Cl 17 35.45 Promethium Pn 61 Chorinum Co 27 58.93 Radium Ra 88 Coperidum Co 27 58.93 Radium Ra 48 Dubnium Db 105 262.11* Radium Radium	Bohrium	Bh	107	200.30 264 12ª	Osmium	no Os	76
brownine Br 35 10.01 Dagent D 3 Bromine Br 35 79.90 Palladium Pd 46 Cadium Ca 20 40.06 Platinum Pt 78 Californium Cf 98 251.08 ⁴ Platonium Pu 94 Carbon C 6 12.01 Polonium Pu 94 Cerium Ce 58 140.12 Potassium K 19 Ceium Cs 55 132.91 Promethium Pn 61 Chorine C1 17 35.45 Promethium Pn 61 Cobait Co 27 58.93 Radon Rn 86 Copernicium Cn 112 255° Radon Rn 86 Corpert Cu 29 63.55 Rheinum Re 75 Curium Ds 105 262.11° Roontigen	Boron	B	5	10.81	Ovvden	0	8
Domine Dr 3.3 13.90 Dromotion 10 4.0 Cadnium Cd 48 11.241 Phosphorus P 15 Calionium Ca 20 40.08 Platinum Pt 78 Californium C 68 12.01 Polonium Po 94 Carbon C 6 12.01 Potastium Possodymium Pr 59 Cesium Ce 55 13.291 Prasodymium Pr 59 Chorine Cl 17 35.45 Promethium Pa 91 Cobalt Co 27 58.93 Radon Ra 88 Coperricum Cu 29 63.55 Rhenium Re 75 Curum Cn 910 252.081 Rubidium Rb 37 Dysprosium Dy 66 162.50 Rubidium Rd 104 Etropium Fu 104 289 ³ </td <td>Bromino</td> <td>Br</td> <td>25</td> <td>70.00</td> <td>Palladium</td> <td>Pd</td> <td>46</td>	Bromino	Br	25	70.00	Palladium	Pd	46
	Codmium	Cd	19	19.90	Phoenborue	D	40
	Calcium	Ca	40	112.41	Platinum	I Dt	70
Cantoninum Ca 38 251.05 Production Pa 34 Carbon C 6 12.01 Polonium Po 84 Cerium Ce 58 140.12 Potassium K 19 Cesium Cs 55 132.91 Proseodymium Pr 59 Chorine Cl 17 35.45 Promethium Pm 61 Chorine Cl 17 35.45 Promethium Pm 61 Cobalt Co 27 58.93 Radum Ra 88 Coperricium Cn 112 285* Radon Rn 86 Copper Cu 29 63.55 Rhenium Rg 111 Dubnium Ds 105 262.11* Rodium Rg 111 Dysprosium Dg 66 162.50 Rutherlordium Rf 104 Erroium Eu 63 151.96 Seanarium <td>Californium</td> <td>Ca</td> <td>20</td> <td>40.00 251.00^a</td> <td>Plutonium</td> <td>FL Du</td> <td>04</td>	Californium	Ca	20	40.00 251.00 ^a	Plutonium	FL Du	04
Carlon Carlon Carlon Formum Formum<	Carbon	C	90	201.00	Polonium	Po	94 8/
Cenum Ce Data France	Carbon	C	58	140.12	Potossium	ro k	10
Cestum Cs 35 13.2.31 Prosecuymian Pri 35 Chlorine Cl 17 35.45 Promethium Pm 61 Chorine Cl 17 35.45 Promethium Pm 61 Chorine Ca 27 58.93 Radium Ra 88 Coppericium Cn 112 2285 ³ Radon Rn 86 Coppericium Cn 96 247.07 ^a Rhodium Rb 37 Darmstadtium Ds 110 271 ^a Roentegenium Rg 111 Dubnium Ds 105 262.11 ^a Rubicium Rg 111 Dysprosium Dy 66 162.50 Rutherfordium Rf 104 Eribim Er 68 167.26 Samarium Sg 21 Fermium Fm 100 257.10 ^a Scalongium Sg 14 Francium F 9 1	Cenium	Ce		140.12	Polassium	n Dr	19
Chromium Cr 24 52.30 Profilemant Fin 0.0 Cobalt Co 27 58.93 Radium Ra 88 Copper Cu 29 63.55 Rhenium Re 75 Curium Cm 96 247.07 ^a Rhodium Rh 45 Darmstadtium Ds 110 271 ^a Roentgenium Rg 111 Dysprosium Dy 66 162.50 Rutherfordium Rb 37 Dysprosium Dy 66 162.50 Rutherfordium Rf 104 Erbium Er 68 167.26 Samarium Sg 106 Europium Eu 63 151.96 Scandium Sg 106 Fermium Fm 100 257.10 ^a Scaborgium Sg 106 Ferovium F 9 19.00 Silicon Si 14 Francium F 9 19.00	Cesium	CS	17	25.45	Promothium	ГI Рт	59 61
Chroninnin Chroninnin Pade 91 <td>Chromium</td> <td>CI</td> <td>17</td> <td>50.40</td> <td>Prometrinium</td> <td>FIII Do</td> <td>01</td>	Chromium	CI	17	50.40	Prometrinium	FIII Do	01
Cubant Cubant Cubant Radon	Cilioilliulli	Ci	24	52.00	Piolacumum	rd Do	91
Copenticului Chi 112 285 Nation Mit 660 Copper Cu 29 63.55 Rhenium Re 75 Curium Cm 96 247.07 ^a Rhodium Rh 45 Darmstadtium Ds 100 271 ^a Roentgenium Rg 111 Dubnium Db 105 262.11 ^a Rubidium Rb 37 Dysprosium Dy 66 162.50 Rutherinum Ru 44 Ensteinium Es 99 252.08 ^a Rutheriodium Rf 104 Etrium E 63 151.96 Scandium Sc 21 Fermium Fm 100 257.10 ^a Seaborgium Sg 106 Floorine F 9 19.00 Silicon Si 14 Francium Fr 87 23 Suffur S 16 Goldinium Ga 31 69.72	Coparticium	CO	27	00.93 0058	Radiulli Radan	Rd	00
CupuerCu2963.35RiteriumRef75DarmstadtiumDs110 271^{a} RoodiumRh45DarmstadtiumDs110 271^{a} RoontgeniumRg111DubniumDb105 262.11^{a} RubidiumRb37DysprosiumDy66162.50RutheniumRt104EinsteiniumEs99 252.08^{a} RutherfordiumRf104ErbiumEr68167.26SamariumSg106EuropiumEu63151.96ScandiumSg106FerniumFm100 257.10^{a} SeaborgiumSg106FloorineF919.00SiliconSi14FranciumFr87223.02 ^a SilverAg47GadoliniumGd64157.25SodiumNa111GallumGa3169.72StrontiumSr38GermaniumGe327.63SulfurS16GoldAu79196.97TantalumTa73HasiumHs108269.13 ^a TelluriumTb65HolmumHo67164.93ThaliumTh89IdorgenH11.008ThoriumTh90IndiumIn4342.2ThuliumTi22IronFe265.85Tungsten	Copernicium	Ch	112	200	Rauun	RII Do	00 75
	Copper	Cu	29	03.00	Rhenium	ке Dh	10
Darkinstandulin Ds 110 2/1 Robingimin Rg 111 Dubnium Db 105 262.11 ^a Rubidium Ru 44 Einsteinium Es 99 252.08 ^a Rutheriordium Rf 104 Erbium Er 68 167.26 Samarium Sc 21 Fermium Eu 63 151.96 Scandium Sc 21 Fermium Fm 100 257.10 ^a Seaborgium Sg 106 Florovium Fl 114 289 ^a Selenium Se 34 Fluorine F 9 19.00 Silicon Si 14 Gadolinium Gd 64 157.25 Sodium Na 11 Galdolinium Ga 31 69.72 Strontium Sr 38 Germanium Ga 32 72.63 Sulfur Ta 73 Hanium Hf 72 178.49 </td <td>Curium</td> <td>Cm</td> <td>96</td> <td>247.07</td> <td>Riloululli Roontoonium</td> <td>KII Do</td> <td>40</td>	Curium	Cm	96	247.07	Riloululli Roontoonium	KII Do	40
Dubmini Dupprosium Dysprosium EsDy 966162.50 162.50Ruthenium RuRu 44EinsteiniumEs99252.08°RutherfordiumRf104ErbiumEr68167.26SamarumSc21EuropiumEu6315.96ScandiumSc21FerniumFm100257.10°SeaborgiumSg106FleroviumFI114289°SeleniumSe34FluorineF919.00SilconSi14FranciumFr87223.02°SilverAg47GadoliniumGd64157.25SodiumNa111GalliumGa3169.72StrontiumSr38GermaniumGe3272.63SuffarS16GoldAu79196.97TantalumTa73HasiumHs108269.13°TechnetiumTc43HassiumHs108269.13°TelluriumTe52HeliumHe24.003TentiumTo69IodineI53126.90TinSn50IdiumIn49114.82ThuliumTm69IodineI53126.90TinSn50IndumIn49114.82ThuliumTi22IronFe265.85Tungsten<	Darmstautium	DS	100	271	Rueingemum	кg	27
DyspinsulinDybos162.50RutherfordiumRu44EinsteiniumEs99252.08°RutherfordiumRf104EinsteiniumEr68167.26SamariumSm62EuropiumEu63151.96ScandiumSc21FerniumFm100257.10°SelongumSg106FleroviumFl114289°SeleniumSe34FluorineF919.00SiliconSi14FranciumFr87223.02°SilverAg47GadoliniumGd64157.25SodumNa11GaldiniumGa3169.72StrontiumSr38GermaniumGe3272.63SulfurS16GoldAu79196.97TantalumTa73HafniumHf72178.49TechnetiumTc43HassiumHs108269.13°TelluriumTb65HolmumHo67164.93ThalliumTh81HydrogenH11.008ThoriumTh90IndiumIn49114.82ThuliumTh90IndiumIn49114.82ThuliumTi22IronFe2655.85TungstenW74KryptonKr3683.80UraniumU92	Dubiliulii	Du	105	202.11	Rubialulli	KU Du	31
EntistemutinEs99232.06Numerior functionN104ErbiumEr68167.26SamariumSm62EuropiumFu63151.96ScandiumSc21FermiumFm100257.10°SeaborgiumSg106FieroviumFI114280°SeleniumSe34FluorineF919.00SiliconSi14FranciumFr87223.02°SilverAg47GadoliniumGd64157.25SodiumNa111GaliumGa3169.72StrottiumSr38GermaniumGe3272.63SulfurS16GoldAu79196.97TantalumTa73HafniumHf72178.49TechnetiumTc43HassiumHs108269.13°ThatliumTb65HolmiumHo67164.93ThatliumTh81HydrogenH11.008ThoriumTh90IndiumIn49114.82ThuliumTm69IodineI53126.90TinSn50IndiumIn49114.82TuniumU92IndiumIr71129.22TitaniumTi22IronFe2655.85TungstenW74Krypton <t< td=""><td>Dysprosium</td><td>Dy</td><td>00</td><td>162.50</td><td>Rutherfordium</td><td>KU Df</td><td>44</td></t<>	Dysprosium	Dy	00	162.50	Rutherfordium	KU Df	44
ElduninEn66167.26SaluationSnin62EuropiumEu63151.96ScandiumSc21FermiumFm100 257.10^3 SeaborgiumSg106FlorviumF919.00SilconSi14FranciumFr87223.02^aSilverAg47GadoliniumGd64157.25SodiumNa11GaldinumGa3169.72StrontiumSr38GermaniumGe3272.63SulfurS16GoldAu79196.97TantalumTa73HafniumHf72178.49TechnetiumTe52HeliumHe24.003TerbiumTb65HolmiumHo67164.93ThalliumTh81HydrogenH11.008ThoriumTh90IndiumIn49114.82ThuliumTa22IronFe2655.85TungtenW74KryptonKr3683.80UraniumV23LawrenciumLr103262.11 ^a XenonXe54LeadPb82207.2YtterblumYb70LithumLu36.94YttriumY39LivermoriumLv116292 ^a ZincZn30MagnesiumMg <td>Einsteinium</td> <td>ES Er</td> <td>99</td> <td>252.08</td> <td>Ruthenordium</td> <td>KI</td> <td>104</td>	Einsteinium	ES Er	99	252.08	Ruthenordium	KI	104
EuropumEu63151.96Seaborgum5021FermiumFm100 257.10^a SeaborgumSg106FleroviumF114 228^{a^a} SeleniumSe34FluorineF919.00SiliconSi14FranciumFr87 223.02^a SilverAg47GadoliniumGd64157.25SodiumNa11GaliumGa3169.72StrontiumSr38GermaniumGa3272.63SulfurS16GoldAu79196.97TantalumTa73HafniumHf72178.49TechnetiumTc43HassiumHs108269.13 ^a TellvirumTb65HeliumHe24.003TerbiumTb65HolmiumHo67164.93ThalliumTh81HydrogenH11.008ThoriumTh90IndiumIn49114.82ThuliumTm69IodineI53126.90TinSn50IridumIr77192.22TitaniumTi22IronFe2655.85TungstenW74LawrenciumLa57138.91VanadiumV23LawrenciumLa57138.91VanadiumY30Livermoriu	Erbium	Er	60	167.20	Samanum	SIII	02
FermunFin100257.10°SelabliguinSg100FleroviumFl114289°SeleniumSg34FluorineF919.00SiliconSi14FranciumFr87223.02°SilverAg47GadoliniumGd64157.25SodiumNa11GaliumGa3169.72StrontiumSr38GermaniumGe3272.63SulfurS16GoldAu79196.97TantalumTa73HafniumHf72178.49TechnetiumTc43HassiumHs108269.13°TelluriumTb65HeliumHe24.003TerbiumTb65HolmiumHo67164.93ThalliumTh81HydrogenH11.008ThoriumTh90IndiumIn49114.82ThuliumTm69IodineI53126.90TinSn50IridumIr77192.22TitaniumTi22IronFe2655.85TungstenW74KryptonKr3683.80UraniumU92LantanumLa57138.91VanadiumYb70LithumLu71174.97ZirconiumXe54LeadPb82 <td>Europium</td> <td>EU</td> <td>63</td> <td>151.96</td> <td>Scandium</td> <td>50 50</td> <td>106</td>	Europium	EU	63	151.96	Scandium	50 50	106
referenceF919.00SilectionSi14FuorineFr919.00SiliconSi14FranciumFr87223.02°SilverAg47GadoliniumGd64157.25SodiumNa11GalliumGa3169.72StrontiumSr38GermaniumGe3272.63SulfurS16GoldAu79196.97TantalumTa73HafniumHf72178.49TechnetiumTc43HassiumHs108269.13°TelluriumTe52HeliumHe24.003TerbiumTb65HolmiumHo67164.93ThalliumTh81HydrogenH11.008ThoriumTh90IndiumIn49114.82ThuliumTm69IodineI53126.90TinSn50IronFe2655.85TungstenW74KryptonKr3683.80UraniumU92LanthanumLa57138.91VanadiumV23LawrenciumLr103262.11°XenonXe54LeadPb82207.2YtterbiumYb70LithumLi36.94YttriumY39LivernoriumLv116 <t< td=""><td>Fermium</td><td></td><td>100</td><td>257.10</td><td>Seaborgium</td><td>Sg</td><td>24</td></t<>	Fermium		100	257.10	Seaborgium	Sg	24
Fluchiner919.00SiltonSilton5114FranciumFr87223.02°SilverAg47GadoliniumGd64157.25SodiumNa11GalliumGa3169.72StrontiumSr38GermaniumGe3272.63SulfurS16GoldAu79196.97TantalumTa73HafniumHf72178.49TechnetiumTc43HassiumHs108269.13°TelluriumTe52HeliumHe24.003TerbiumTb65HolmiumHo67164.93ThaliumTh81HydrogenH11.008ThoriumTh90IndiumIn49114.82ThuliumTm69IodineI53126.90TinSn50IridiumIr77192.22TtaniumTi22IronFe2655.85TungstenW74KryptonKr3683.80UraniumU92LanthanumLa57138.91VanadiumV23LawenciumLr103262.11°XenonXe54LeadPb82207.2YtterbiumYb70LithiumLi36.94YttriumY39LivermoriumLv <t< td=""><td>Flerovium</td><td>ri r</td><td>114</td><td>289</td><td>Selenium</td><td>Se Si</td><td>34 14</td></t<>	Flerovium	ri r	114	289	Selenium	Se Si	34 14
TranctionFr67223.02SilverAg47GadoliniumGd64157.25SodiumNa11GalliumGa3169.72StrontiumSr38GermaniumGe3272.63SulfurS16GoldAu79196.97TantalumTa73HafniumHf72178.49TechnetiumTc43HassiumHs108269.13°TelluriumTe52HeliumHe24.003TerbiumTb65HolmiumHo67164.93ThalliumTh90IndiumIn49114.82ThuliumTm69IodineI53126.90TinSn50IridiumIr77192.22TitaniumTi22IronFe2655.85TungstenW74KryptonKr3683.80UraniumU92LawrenciumLi36.94YttriumY39LivermoriumLi36.94YttriumY39LivermoriumLu71174.97ZirconiumZr40MagnesiumMg1224.31 $*^b$ 113MagnesiumMg1224.31 $*^b$ 113	Fluonne	r r	9	19.00	Silicon	SI Ad	14
GaddoinfumGu64157.25SolutionNu11GalliumGa3169.72StrontiumSr38GermaniumGe3272.63SulfurS16GoldAu79196.97TantalumTa73HafniumHf72178.49TechnetiumTc43HassiumHs108269.13°TerbiumTb65HolmiumHe24.003TerbiumTb65HolmiumHo67164.93ThallumTh81HydrogenH11.008ThoriumTh90IndiumIn49114.82ThuliumTm69IodineI53126.90TinSn50IridumIr77192.22TitaniumTi22IronFe2655.85TungstenW74KryptonKr3683.80UraniumU92LathanumLa57138.91VanadiumV23LawrenciumLr103262.11°XenonXe54LeadPb82207.2YtterbiumYb70LithiumLu71174.97ZirconiumZr40MagnesiumMg1224.31 $*^b$ 113MagnesiumMg1224.31 $*^b$ 113	Francium		61	223.02	Sadium	Ag	47
GammiumGa3169.72SubfurSt36GermaniumGe3272.63SulfurSt16GoldAu79196.97TantalumTa73HafniumHf72178.49TechnetiumTc43HassiumHs108269.13°TelluriumTe52HeliumHe24.003TerbiumTb65HolmiumHo67164.93ThalliumTl81HydrogenH11.008ThoriumTh90IndiumIn49114.82ThuliumTm69IodineI53126.90TinSn50IridiumIr77192.22TitaniumTi22IronFe2655.85TungstenW74KryptonKr3683.80UraniumU92LathanumLa57138.91VanadiumV23LawrenciumLr103262.11°XenonXe54LeadPb82207.2YtterbiumYb70LithiumLu71174.97ZirconiumZr40MagnesiumMg1224.31 $*^b$ 113MagnesiumMg1224.31 $*^b$ 113	Gadoimium	Gu	04	157.25	Strontium	INd Sr	20
GerS272.63SouthS10GoldAu79196.97TantalumTa73HafniumHf72178.49TechnetiumTc43HassiumHs108269.13 ^a TelluriumTe52HeliumHe24.003TerbiumTb65HolmiumHo67164.93ThalliumTl81HydrogenH11.008ThoriumTh90IndiumIn49114.82ThuliumTm69IodineI53126.90TinSn50IridiumIr77192.22TitaniumTi22IronFe2655.85TungstenW74KryptonKr3683.80UraniumU92LanthanumLa57138.91VanadiumV23LawrenciumLr103262.11 ^a XenonXe54LeadPb82207.2YtterbiumYb70LithumLu71174.97ZirconiumZr40MagnesiumMg1224.31 $*^b$ 113MagneseMn2554.94 $*^b$ 115	Gamun	Ga	31	09.72	Subfur	0	30
GoldAu79196.97IanadumIa73HafniumHf72178.49TechnetiumTc43HassiumHs108269.13°TechnetiumTe52HeliumHe24.003TerbiumTb65HolmiumHo67164.93ThalliumTh81HydrogenH11.008ThoriumTh90IndiumIn49114.82ThuliumTm69IodineI53126.90TinSn50IridiumIr77192.22TitaniumTi22IronFe2655.85TungstenW74KryptonKr3683.80UraniumU92LanthanumLa57138.91VanadiumV23LawrenciumLr103262.11°XenonXe54LeadPb82207.2YtterbiumYb70LithiumLi36.94YttriumY39LivermoriumLu71174.97ZirconiumZr40MagnesiumMg1224.31 $*^b$ 113ManganeseMn2554.94 $*^b$ 115	Germanium	Ge	32	12.03	Juliui	о То	10
Hamiltin H 1/2 1/8.49 Itelineutin Itelineutin <thitelineutin< th=""> <thitelineutin< th=""></thitelineutin<></thitelineutin<>	GOIU	Au	79	190.97	Tantalulli	la To	13
Hassuun Hs 108 209,13 Tenunn Te 32 Helium He 2 4,003 Terbium Tb 65 Holmium Ho 67 164.93 Thallium Tl 81 Hydrogen H 1 1.008 Thorium Th 90 Indium In 49 114.82 Thulium Tm 69 Iodine I 53 126.90 Tin Sn 50 Iridium Ir 77 192.22 Titanium Ti 22 Iron Fe 26 55.85 Tungsten W 74 Krypton Kr 36 83.80 Uranium U 92 Lanthanum La 57 138.91 Vanadium V 23 Lawrencium Lr 103 262.11 ^a Xenon Xe 54 Lead Pb 82 207.2 Ytterbium Yb 70 Lithium Lu 3 6.94 Yttrium Y <td< td=""><td>Hannun</td><td>П</td><td>109</td><td>170.49 260.12⁸</td><td>Tollurium</td><td>TC To</td><td>43 52</td></td<>	Hannun	П	109	170.49 260.12 ⁸	Tollurium	TC To	43 52
Hendrift He Z 4,003 Herbritt Herbritt Ho 67 164,93 Thellium Ti 81 Holmium Ho 67 164,93 Thallium Th 90 Indium In 49 114,82 Thulium Th 90 Indium In 49 114,82 Thulium Tm 69 Iodine I 53 126,90 Tin Sn 50 Iridium Ir 77 192,22 Titanium Ti 22 Iron Fe 26 55.85 Tungsten W 74 Krypton Kr 36 83.80 Uranium U 92 Lanthanum La 57 138.91 Vanadium V 23 Lawrencium Lr 103 262.11 ^a Xenon Xe 54 Lead Pb 82 207.2 Ytterbium Yb 70 Lithium Li 3 6.94 Yttrium Y 39 Livermorium<	Halium		108	209.13	Torbium	Th	52
Hommun Ho Or 104.93 Hammin H Or Or Hydrogen H 1 1.008 Thorium Th 90 Indium In 49 114.82 Thulium Th 90 Iodine I 53 126.90 Tin Sn 50 Iridium Ir 77 192.22 Titanium Ti 22 Iron Fe 26 55.85 Tungsten W 74 Krypton Kr 36 83.80 Uranium U 92 Lanthanum La 57 138.91 Vanadium V 23 Lawrencium Lr 103 262.11 ^a Xenon Xe 54 Lead Pb 82 207.2 Ytterbium Yb 70 Lithium Li 3 6.94 Yttrium Y 39 Livermorium Lv 116 292 ^a Zinc Zn 30 Lutetium Mg 12 24.31 *b 113<	Helium	Не	67	4.003	Thallium	TU TI	00 81
Indium In 1 1.008 Indium In 30 Indium In 49 114.82 Thulium Tm 69 Iodine I 53 126.90 Tin Sn 50 Iridium Ir 77 192.22 Titanium Ti 22 Iron Fe 26 55.85 Tungsten W 74 Krypton Kr 36 83.80 Uranium U 92 Lanthanum La 57 138.91 Vanadium V 23 Lawrencium Lr 103 262.11 ^a Xenon Xe 54 Lead Pb 82 207.2 Ytterbium Yb 70 Lithium Li 3 6.94 Yttrium Y 39 Livermorium Lv 116 292 ^a Zinc Zn 30 Lutetium Mg 12 24.31 *b 113 Maganese Mn 25 54.94 *b 115	Hudrogon	но	1	1 009	Thorium	11 Th	00
Indum In 4-9 114.82 Indum Ind 10 09 Iodine I 53 126.90 Tin Sn 50 Iridium Ir 77 192.22 Titanium Ti 22 Iron Fe 26 55.85 Tungsten W 74 Krypton Kr 36 83.80 Uranium U 92 Lanthanum La 57 138.91 Vanadium V 23 Lawrencium Lr 103 262.11 ^a Xenon Xe 54 Lead Pb 82 207.2 Ytterbium Yb 70 Lithium Li 3 6.94 Yttrium Y 39 Livermorium Lv 116 292 ^a Zinc Zn 30 Lutetium Mg 12 24.31 *b 113 Maganese Mn 25 54.94 *b 115	Indium	li In	1	114 92	Thulium	Tm	50 60
Indiana I 33 126.90 Im Sin 30 Iridium Ir 77 192.22 Titanium Ti 22 Iron Fe 26 55.85 Tungsten W 74 Krypton Kr 36 83.80 Uranium U 92 Lanthanum La 57 138.91 Vanadium V 23 Lawrencium Lr 103 262.11 ^a Xenon Xe 54 Lead Pb 82 207.2 Ytterbium Yb 70 Lithium Li 3 6.94 Yttrium Y 39 Livermorium Lv 116 292 ^a Zinc Zn 30 Lutetium Lu 71 174.97 Zirconium Zr 40 Magnesium Mg 12 24.31 *b 113 Manganese Mn 25 54.94 *b 115	Indian	111	49	114.02	Tin	Sn	09 50
Iron Fe 26 55.85 Tungsten W 74 Krypton Kr 36 83.80 Uranium U 92 Lanthanum La 57 138.91 Vanadium V 23 Lawrencium Lr 103 262.11 ^a Xenon Xe 54 Lead Pb 82 207.2 Ytterbium Yb 70 Lithium Li 3 6.94 Yttrium Y 39 Livermorium Lv 116 292 ^a Zinc Zn 30 Lutetium Lu 71 174.97 Zirconium Zr 40 Magnesium Mg 12 24.31 *b 113 Manganese Mn 25 54.94 *b 115	Iridium	l Ir	77	120.90	Titanium	Ti	20
Infinition Fe 20 55.85 Infiguent W 74 Krypton Kr 36 83.80 Uranium U 92 Lanthanum La 57 138.91 Vanadium V 23 Lawrencium Lr 103 262.11 ^a Xenon Xe 54 Lead Pb 82 207.2 Ytterbium Yb 70 Lithium Li 3 6.94 Yttrium Y 39 Livermorium Lv 116 292 ^a Zinc Zn 30 Lutetium Lu 71 174.97 Zirconium Zr 40 Maganese Mn 25 54.94 *b 115	Inulum	II Eo	26	192.22	Tungeton	11 W/	22 74
Nypon N 36 83.80 Oranium 0 92 Lanthanum La 57 138.91 Vanadium V 23 Lawrencium Lr 103 262.11 ^a Xenon Xe 54 Lead Pb 82 207.2 Ytterbium Yb 70 Lithium Li 3 6.94 Yttrium Y 39 Livermorium Lv 116 292 ^a Zinc Zn 30 Lutetium Lu 71 174.97 Zirconium Zr 40 Maganese Mn 25 54.94 * ^b 115	IIUII Krypton	Fe	20	22.60	Ilingstein	VV	02
Landrahum La 57 138.91 Variadum V 23 Lawrencium Lr 103 262.11 ^a Xenon Xe 54 Lead Pb 82 207.2 Ytterbium Yb 70 Lithium Li 3 6.94 Yttrium Y 39 Livermorium Lv 116 292 ^a Zinc Zn 30 Lutetium Lu 71 174.97 Zirconium Zr 40 Maganesium Mg 12 24.31 *b 113 Manganese Mn 25 54.94 *b 115	Krypton	nr La	30	03.00	Vanadium	U	92
Lawrencium Li 105 262.11° Aerion Xe 54 Lead Pb 82 207.2 Ytterbium Yb 70 Lithium Li 3 6.94 Yttrium Y 39 Livermorium Lv 116 292 ^a Zinc Zn 30 Lutetium Lu 71 174.97 Zirconium Zr 40 Maganesium Mg 12 24.31 *b 113 Manganese Mn 25 54.94 *b 115		La	<i>ا</i> ت 102	130.91	Vanauluiii Vanan	V Vo	23
Lead PD 62 207.2 rtterblum PD		Lſ	103	202.11	Vttorbium		04 70
Lunum Li S 6.94 Humm Y 39 Livermorium Lv 116 292 ^a Zinc Zn 30 Lutetium Lu 71 174.97 Zirconium Zr 40 Magnesium Mg 12 24.31 *b 113 Manganese Mn 25 54.94 *b 115	Leau	PD L:	ð2 2	201.2	Vttrium	TU V	10
Livermonum Lv 116 292 ⁻ 2inc 2n 30 Lutetium Lu 71 174.97 Zirconium Zr 40 Magnesium Mg 12 24.31 *b 113 Manganese Mn 25 54.94 *b 115		LI 1	3 110	0.94	Zino	Г 75	39
Lu /1 1/4.97 Zircontum Zr 40 Magnesium Mg 12 24.31 *b 113 Manganese Mn 25 54.94 *b 115		LV	110	292-	Zillu Ziroonium	۲۱۱ ۲۰	30
Wig 12 24.51 *b 113 Manganese Mn 25 54.94 *b 115	Magnacium	LU	11	1/4.9/		21	40
IVIAIIganese IVIII 20 04.94 *b 115	Magnesium	IVIS	12	24.31	*D		113
	wanganese	IVIT)	25	54.94	*0		115

^a Mass of longest-lived or most important isotope.

^b The names of these elements have not yet been decided.

Principles of Chemistry A Molecular Approach

THIRD EDITION

Westmont College

Editor-in-Chief: Jeanne Zalesky Senior Acquisitions Editor: Terry Haugen Director of Development: Jennifer Hart Marketing Manager: Will Moore Development Editor: Erin Mulligan Program Managers: Jessica Moro / Sarah Shefveland Project Manager: Beth Sweeten Text Permissions Project Manager: Tim Nicholls Program Management Team Lead: Kristen Flatham Project Management Team Lead: David Zielonka Production Management: Francesca Monaco, CodeMantra Compositor: CodeMantra Design Manager: Derek Bacchus Interior Designer: Gary Hespenheide Cover Designer: Gary Hespenheide Illustrator: Precision Graphics Photo Researchers: Lauren McFalls / Mark Schaefe, Lumina Datamatics Photo Leads: Maya Melenchuk / Eric Shrader Operations Specialist: Maura Zaldivar-Garcia Cover and Chapter Opening Illustrations: Quade Paul

Credits and acknowledgments for materials borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within the text or on p. xxx.

Copyright © 2016, 2013, 2010 Pearson Education, Inc. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 221 River Street, Hoboken, New Jersey 07030. For information regarding permissions, call (847) 486-2635.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

MasteringChemistry is a trademark, in the U.S. and/or other countries, of Pearson Education, Inc. or its affiliates.

Library of Congress Cataloging-in-Publication Data

Tro, Nivaldo J.
Principles of Chemistry : a molecular approach / Nivaldo J. Tro, WestmontCollege. -- Third edition. p cm
ISBN 978-0-321-97194-4
1. Chemistry, Physical and theoretical--Textbooks. 2. Chemistry, Physical and theoretical--Study and teaching (Higher) I. Title.
QD453.3.T76 2016
540--dc23

2014040200

1 2 3 4 5 6 7 8 9 10—**V011**—16 15 14 13 12

ISBN 10: 0-321-97194-9; ISBN 13: 978-0-32197194-4

www.pearsonhighered.com

To Michael, Ali, Kyle, and Kaden

About the Author

Nivaldo Tro is a professor of chemistry at Westmont College in Santa Barbara, California, where he has been a faculty member since 1990. He received his Ph.D. in chemistry from Stanford University for work on developing and using optical techniques to study the adsorption and desorption of molecules to and from surfaces in ultrahigh vacuum. He then went on to the University of California at Berkeley, where he did postdoctoral research on ultrafast reaction dynamics in solution. Since coming to Westmont, Professor Tro has been awarded grants from the American Chemical Society

Petroleum Research Fund, from the Research Corporation, and from the National Science Foundation to study the dynamics of various processes occurring in thin adlayer films adsorbed on dielectric surfaces. He has been honored as Westmont's outstanding teacher of the year three times and has also received the college's outstanding researcher of the year award. Professor Tro lives in Santa Barbara with his wife, Ann, and their four children, Michael, Ali, Kyle, and Kaden. In his leisure time, Professor Tro enjoys mountain biking, surfing, reading to his children, and being outdoors with his family.

Brief Contents

	Preface	XV
1	Matter, Measurement, and Problem Solving	2
2	Atoms and Elements	42
3	Molecules, Compounds, and Chemical Equations	76
4	Chemical Quantities and Aqueous Reactions	124
5	Gases	176
6	Thermochemistry	220
7	The Quantum-Mechanical Model of the Atom	262
8	Periodic Properties of the Elements	300
9	Chemical Bonding I: The Lewis Model	340
10	Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory	378
11	Liquids, Solids, and Intermolecular Forces	428
12	Solutions	478
13	Chemical Kinetics	518
14	Chemical Equilibrium	562
15	Acids and Bases	602
16	Aqueous Ionic Equilibrium	646
17	Free Energy and Thermodynamics	692
18	Electrochemistry	734
19	Radioactivity and Nuclear Chemistry	776
	Appendix I: Common Mathematical Operations in Chemistry	A-1
	Appendix II: Useful Data	A-7
	Appendix III: Answers to Selected Exercises	A-17
	Appendix IV: Answers to In-Chapter Practice Problems	A-42
	Glossary	G-1
	Credits	C-1
	Index	I-1

Contents

	Preface	XV
1	Matter, Measurement,	
	and Problem Solving	2
1.1	Atoms and Molecules	3
1.2	The Scientific Approach to Knowledge	5
1.3	The Classification of Matter The States of Matter: Solid, Liquid, and Gas 7 Classifyin Matter According to Its Composition: Elements, Compound and Mixtures 8	7 Ig Is,
1.4	Physical and Chemical Changes and Physical and Chemical Properties	9
1.5	Energy: A Fundamental Part of Physical and	4.0
		12
1.6	The Units of Measurement The Standard Units 13 The Meter: A Measure of Length 1 The Kilogram: A Measure of Mass 14 The Second: A Measure of Time 14 The Kelvin: A Measure of Temperature 14 Prefix Multipliers 16 Derived Units: Volu and Density 17 Volume 17 Density 18 Calculating Density 18	13 14 ume
1.7	The Reliability of a MeasurementCounting Significant Figures 21Exact Numbers 22Significant Figures in Calculations 23Precision andAccuracy 24Accuracy 24	19
1.8	Solving Chemical Problems	25
	Converting from One Unit to Another 25 General Probler Solving Strategy 27 Units Raised to a Power 29 Problems Involving an Equation 30	n-
	Chapter in Review	33
	Key Terms 33 Key Concepts 33 Key Equations and Relationships 34 Key Learning Objectives 34	
	Exercises Problems by Topic 34 Cumulative Problems 38 Challenge Problems 39 Conceptual Problems 40 Questions for Group Work 41 Answers to Conceptual Connections 41	34

2	Atoms and Elements	42
2.1	Imaging and Moving Individual Atoms	43
2.2	Modern Atomic Theory and the Laws That Led to It The Law of Conservation of Mass 45 The Law of Definite Proportions 46 The Law of Multiple Proportions 47 Joh Dalton and the Atomic Theory 48	45 In
2.3	The Discovery of the Electron Cathode Rays 49 Millikan's Oil Drop Experiment: The Charge of the Electron 50	48
2.4	The Structure of the Atom	50
2.5	Subatomic Particles: Protons, Neutrons, and Electrons in Atoms Elements: Defined by Their Numbers of Protons 53 Isotopes: When the Number of Neutrons Varies 54 Ions: Losing and Gaining Electrons 56	52
2.6	Finding Patterns: The Periodic Law and the Periodic Table Ions and the Periodic Table 59	57
2.7	Atomic Mass: The Average Mass of an Element's Atoms	61
2.8	Molar Mass: Counting Atoms by Weighing Them The Mole: A Chemist's "Dozen" 62 Converting between Number of Moles and Number of Atoms 63 Converting between Mass and Amount (Number of Moles) 64	62
	Chapter in Review Key Terms 68 Key Concepts 69 Key Equations and Relationships 69 Key Learning Objectives 69	68
	Exercises Problems by Topic 70 Cumulative Problems 72 Challenge Problems 73 Conceptual Problems 74 Questions for Group Work 74 Answers to Conceptual Connections 75	70

3 Molecules, Compounds, and Chemical Equations

	Chemical Equations	76
3.1	Hydrogen, Oxygen, and Water	77
3.2	Chemical Bonds Ionic Bonds 79 Covalent Bonds 80	79
3.3	Representing Compounds: Chemical Formulas and Molecular ModelsTypes of Chemical Formulas80Molecular Models82	80
3.4	An Atomic-Level View of Elements and Compounds	82
3.5	 Ionic Compounds: Formulas and Names Writing Formulas for Ionic Compounds 87 Naming Ionic Compounds 87 Naming Binary Ionic Compounds Containing a Metal That Forms Only One Type of Cation 8 Naming Binary Ionic Compounds Containing a Metal That Forms More Than One Kind of Cation 90 Naming Ionic Compounds Containing Polyatomic Ions 91 Hydrated Io Compounds 92 	86 9 nic
3.6	Molecular Compounds: Formulas and NamesNaming Molecular Compounds93Naming Acids94Naming Binary Acids95Naming Oxyacids95	93
3.7	Formula Mass and the Mole Concept for Compounds Molar Mass of a Compound 97 Using Molar Mass to Count Molecules by Weighing 97	96
3.8	Composition of Compounds Conversion Factors from Chemical Formulas 101	99
3.9	Determining a Chemical Formula fromExperimental DataCalculating Molecular Formulas forCompounds 104Combustion Analysis 105	102
3.10	Writing and Balancing Chemical Equations Writing Balanced Chemical Equations 109	107
3.11	Organic Compounds	111
	Chapter in Review	114
	Key Terms 114 Key Concepts 114 Key Equations and Relationships 115 Key Learning Objectives 116	
	Exercises	117

Problems by Topic **117** Cumulative Problems **120** Challenge Problems 121 Conceptual Problems 122 Questions for Group Work 122 Answers to Conceptual Connections 122

4	Chemical Quantities and	
	Aqueous Reactions	124
4.1	Climate Change and the Combustion of Fossil Fuels	125
4.2	Reaction Stoichiometry: How Much Carbon Dioxide?	127
	Making Pizza: The Relationships Among Ingredients127Making Molecules: Mole-to-Mole Conversions128Making Molecules: Mass-to-Mass Conversions128	
4.3	Limiting Reactant, Theoretical Yield, and	404
	Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Reactant Masses 133	131
4.4	Solution Concentration and Solution Stoichiometry Solution Concentration 138 Using Molarity in Calculations 139 Solution Stoichiometry 143	137
4.5	Types of Aqueous Solutions and SolubilityElectrolyte and Nonelectrolyte Solutions 145The Solubof Ionic Compounds 146	144 ility
4.6	Precipitation Reactions	148
4.7	Representing Aqueous Reactions: Molecular, Ionic, and Complete Ionic Equations	152
4.8	Acid-Base and Gas-Evolution Reactions	154
	Acid-Base Reactions 154 Gas-Evolution Reactions 157	
4.9	Oxidation-Reduction ReactionsOxidation States 161Identifying Redox Reactions 163Combustion Reactions165	159
	Chapter in Review	167
	Key Terms 167 Key Concepts 167 Key Equations a Relationships 168 Key Learning Objectives 168	nd
	Exercises	168
	Problems by Topic 168 Cumulative Problems 172 Challenge Problems 173 Conceptual Problems 174 Questions for Group Work 175 Answers to Conceptua Connections 175	al
5	Gases	176

- **5.1** Breathing: Putting Pressure to Work 177
- **5.2** Pressure: The Result of Molecular Collisions 178 Pressure Units 179

5.3 The Simple Gas Laws: Boyle's Law, Charles's Law, and Avogadro's Law Boyle's Law: Volume and Pressure 181 Charles's Law: Volume and Temperature 183 Avogadro's Law: Volume and Amount (in Moles) 185 5.4 The Ideal Gas Law 5.5 Applications of the Ideal Gas Law: Molar Volume, Density, and Molar Mass of a Gas Molar Volume at Standard Temperature and Pressure 189 Density of a Gas 189 Molar Mass of a Gas 191 5.6 Mixtures of Gases and Partial Pressures 192

Collecting Gases over Water 196

5.7 Gases in Chemical Reactions: Stoichiometry Revisited 198 Molar Volume and Stoichiometry 200

5.8 Kinetic Molecular Theory: A Model for Gases 201 The Nature of Pressure 202 Boyle's Law 202 Charles's Law 202 Avogadro's Law 202 Dalton's Law 202 Temperature and Molecular Velocities 203

- 5.9 Mean Free Path, Diffusion, and Effusion of Gases 205
- 5.10 Real Gases: The Effects of Size and Intermolecular Forces 207

The Effect of the Finite Volume of Gas Particles **207** The Effect of Intermolecular Forces **208** Van der Waals Equation **209**

Chapter in Review

Key Terms **210** Key Concepts **210** Key Equations and Relationships **211** Key Learning Objectives **211**

210

212

220

Exercises

Problems by Topic 212 Cumulative Problems 215 Challenge Problems 217 Conceptual Problems 218 Questions for Group Work 218 Answers to Conceptual Connections 219

6 Thermochemistry

6.1	Chemical Hand Warmers	221
6.2	The Nature of Energy: Key Definitions	222
	Units of Energy 224	
6.3	The First Law of Thermodynamics: There Is No Free Lunch	225
	Internal Energy 225	

6.4	Quantifying Heat and Work230
	Heat 230 Thermal Energy Transfer 232 Work: Pressure-Volume Work 234
6.5	Measuring ΔE for Chemical Reactions: Constant- Volume Calorimetry235
6.6	Enthalpy: The Heat Evolved in a Chemical Reaction at Constant Pressure 238
	Exothermic and Endothermic Processes: A Molecular View 240 Stoichiometry Involving ΔH : Thermochemical Equations 241
6.7	Constant-Pressure Calorimetry: Measuring ΔH_{rxn} 242
6.8	Hess's Law and Other RelationshipsInvolving $\Delta H_{\rm rxn}$ 244
6.9	Enthalpies of Reaction from Standard247Heats of Formation247Standard States and Standard Enthalpy Changes 247249Calculating the Standard Enthalpy Change for a Reaction249
	Chapter in Review253Key Terms253Key Concepts253Key Equations andRelationships254Key Learning Objectives254
	Exercises 255
	Problems by Topic 255 Cumulative Problems 258 Challenge Problems 259 Conceptual Problems 260 Questions for Group Work 260 Answers to Conceptual Connections 261

7 The Quantum-Mechanical Model of the Atom 262

1.1	Schrödinger's Cat	264
.2	The Nature of Light	264
	The Wave Nature of Light 265 The Electromagnetic Spectrum 267 Interference and Diffraction 268 The Particle Nature of Light 270	
.3	Atomic Spectroscopy and the Bohr Model	273
.4	The Wave Nature of Matter: The de Broglie Wavelen the Uncertainty Principle, and Indeterminacy	<mark>gth</mark> , 275

The de Broglie Wavelength **276** The Uncertainty Principle **277** Indeterminacy and Probability Distribution Maps **279**

7.5 Quantum Mechanics and the Atom Solutions to the Schrödinger Equation for the Hydrogen Atom 281 Atomic Spectroscopy Explained 285

7.6 The Shapes of Atomic Orbitals

s Orbitals (I=0) **288** p Orbitals (I=1) **290** d Orbitals (l=2) **291** f Orbitals (l=3) **292** The Phase of Orbitals 292 The Shapes of Atoms 292

Chapter in Review

Key Terms 293 Key Concepts 294 Key Equations and Relationships 294 Key Learning Objectives 295

Exercises Problems by Topic 295 Cumulative Problems 296

Challenge Problems 297 Conceptual Problems 298 Questions for Group Work 298 Answers to Conceptual Connections 298

8 Periodic Properties of the **Elements**

Q 1	Norvo Signal	Trancmiccion	201
0.1	INCINC JISHA	1101151111551011	301

8.2 The Development of the Periodic Table 302

8.3 **Electron Configurations: How Electrons Occupy Orbitals**

Electron Spin and the Pauli Exclusion Principle 304 Sublevel Energy Splitting in Multielectron Atoms 304 Electron Spatial Distributions and Sublevel Splitting 306 Electron Configurations for Multielectron Atoms 308

8.4 Electron Configurations, Valence Electrons, and the **Periodic Table** 311 Orbital Blocks in the Periodic Table **312** Writing an

Electron Configuration for an Element from Its Position in the Periodic Table 313 The Transition and Inner Transition Elements 314

- 8.5 The Explanatory Power of the Quantum-Mechanical Model 315
- 8.6 Periodic Trends in the Size of Atoms and Effective **Nuclear Charge** 316 Effective Nuclear Charge 318 Atomic Radii and the Transition Elements 319
- 8.7 Ions: Electron Configurations, Magnetic Properties, Ionic Radii, and Ionization Energy 321 Electron Configurations and Magnetic Properties of

Ions 321 Ionic Radii 322 Ionization Energy 325

Trends in First Ionization Energy 325 Exceptions to Trends in First Ionization Energy 328 Trends in Second and Successive Ionization Energies 328

8.8 **Electron Affinities and Metallic Character** 329

Electron Affinity 329 Metallic Character 330

Chapter in Review

Key Terms 334 Key Concepts 334 Key Equations and Relationships **335** Key Learning Objectives **335**

Exercises

281

287

293

295

300

303

335

340

334

Problems by Topic 335 Cumulative Problems 337 Challenge Problems 338 Conceptual Problems 338 Questions for Group Work 339 Answers to Conceptual Connections 339

Schemical Bonding I: The Lewis Model

9.1	Bonding Models and AIDS Drugs	342
9.2	Types of Chemical Bonds	342
9.3	Representing Valence Electrons with Dots	344
9.4	Ionic Bonding: Lewis Symbols and Lattice Energies Ionic Bonding and Electron Transfer 345 Lattice Energies: The Rest of the Story 346 Trends in Lattice Energies: Ion Size 347 Trends in Lattice Energies: Ion Charge 347	345 n
	Bonding: Models and Reality 348	00
9.5	Covalent Bonding: Lewis Structures	349
	Single Covalent Bonds 349 Double and Triple Covalent Bonds 350 Covalent Bonding: Models and Reality 350	
9.6	Electronegativity and Bond Polarity	351
	Electronegativity 352 Bond Polarity, Dipole Moment, an Percent Ionic Character 353	d
9.7	Lewis Structures of Molecular Compounds and Polyatomic lons	356
	Writing Lewis Structures for Molecular Compounds 356 Writing Lewis Structures for Polyatomic Ions 357	
9.8	Resonance and Formal Charge	358
	Resonance 358 Formal Charge 360	
9.9	Exceptions to the Octet Rule: Odd-Electron Species, Incomplete Octets, and Expanded Octets	363
	Odd-Electron Species 363 Incomplete Octets 363	

Expanded Octets 364

420

421

428

 10.8
 Molecular Orbital Theory: Electron Delocalization
 409

 Linear Combination of Atomic Orbitals (LCAO)
 410
 410
 413

Chapter in Review

Key Terms **420** Key Concepts **420** Key Equations and Relationships **421** Key Learning Objectives **421**

Exercises

Problems by Topic **421** Cumulative Problems Challenge Problems **426** Conceptual Problems Questions for Group Work **427** Answers to Conceptual Connections

11 Liquids, Solids, and Intermolecular Forces

11.1	Water, No Gravity	429
11.2	Solids, Liquids, and Gases: A Molecular Comparison Changes between States 432	430
11.3	Intermolecular Forces: The Forces That Hold Condensed States Together Dispersion Force 433 Dipole-Dipole Force 435 Hydrogen Bonding 437 Ion-Dipole Force 439	432
11.4	Intermolecular Forces in Action: Surface Tension, Viscosity, and Capillary Action Surface Tension 441 Viscosity 441 Capillary Action	440 442
11.5	Vaporization and Vapor Pressure The Process of Vaporization 442 The Energetics of Vaporization 443 Heat of Vaporization 444 Vapor Pressure and Dynamic Equilibrium 445 Temperature Dependence of Vapor Pressure and Boiling Point 447 Clausius-Clapeyron Equation 448 The Critical Point: The Transition to an Unusual State of Matter 450	442 The ie
11.6	Sublimation and Fusion Sublimation 451 Fusion 452 Energetics of Melting a Freezing 452	451 Ind
11.7	Heating Curve for Water	453
11.8	Phase Diagrams The Major Features of a Phase Diagram 454 Regions Lines 455 The Triple Point 455 The Critical Point 455 Navigation within a Phase Diagram 456	454 454

9.10 Bond Energies and Bond Lengths 365 Bond Energy 366 Using Average Bond Energies to Estimate Enthalpy Changes for Reactions 367 Bond Lengths 369

9.11 Bonding in Metals: The Electron Sea Model 370

Chapter in Review

Key Terms **372** Key Concepts **372** Key Equations and Relationships **373** Key Learning Objectives **373**

372

373

378

380

395

Exercises

Problems by Topic 373 Cumulative Problems 375 Challenge Problems 376 Conceptual Problems 377 Questions for Group Work 377 Answers to Conceptual Connections 377

10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

10.1	Artificial	Sweeteners:	Fooled b	by	Molecular	Shape	379
------	------------	-------------	----------	----	-----------	-------	-----

10.2 VSEPR Theory: The Five Basic Shapes

Two Electron Groups: Linear Geometry**381**Three ElectronGroups: Trigonal Planar Geometry**381**Four ElectronGroups: Tetrahedral Geometry**381**Five Electron Groups:Trigonal Bipyramidal Geometry**382**Six Electron Groups:Octahedral Geometry**383**

10.3	VSEPR Theory: The Effect of Lone Pairs	384
	Four Electron Groups with Lone Pairs 384 Five Electro	n
	Groups with Lone Pairs 386 Six Electron Groups with Lone Pairs 387	
10.4	VSEPR Theory: Predicting Molecular Geometries	388
	Representing Molecular Geometries on Paper 391	

Representing Molecular Geometries on Paper **391** Predicting the Shapes of Larger Molecules **391**

10.5 Molecular Shape and Polarity392

- **10.6** Valence Bond Theory: Orbital Overlap as a Chemical Bond
- 10.7
 Valence Bond Theory: Hybridization of Atomic Orbitals
 397

 sp^3 Hybridization **399** sp^2 Hybridization and Double Bonds **400** sp Hybridization and Triple Bonds **404** sp^3d and sp^3d^2 Hybridization **405** Writing Hybridization and Bonding Schemes **407**

11.9	Water: An Extraordinary Substance 4	56
11.10	Crystalline Solids: Unit Cells and Basic Structures 4 Closest-Packed Structures 461	57
11.11	Crystalline Solids: The Fundamental Types4Molecular Solids 464Ionic Solids 464AtomicSolids 465Solids 465Atomic	63
11.12	Crystalline Solids: Band Theory 4	67
	Chapter in Review4Key Terms 469Key Concepts 469Key Equations aRelationships 470Key Learning Objectives 471Exercises4Problems by Topic 471Cumulative Problems 475Challenge Problems 476ConceptualProblems 476Questions for Group Work 477Answto Conceptual Connections 477	169 nd 171 rers
12	Solutions 4	78
12.1	Thirsty Solutions: Why You Should Not Drink Seawater 4	79
12.2	Types of Solutions and Solubility4Nature's Tendency toward Mixing: Entropy481of Intermolecular Forces482	181 :t
12.3	Energetics of Solution Formation 4	85

Aqueous Solutions and Heats of Hydration **486**

12.4	Solution Equ Solubility	ilibrium and I	Factors Affecting	489
	The Temperatu Solids 489 Water 490	ure Dependence Factors Affectin	e of the Solubility of (g the Solubility of (of Gases in
12.5	Expressing S	olution Conce	entration	492
	Molarity 493 Volume 494	Molality 494 Mole Fraction	Parts by Mass ar and Mole Percent	nd Parts by 495

12.6 Colligative Properties: Vapor Pressure Lowering, Freezing Point Depression, Boiling Point Elevation, and Osmotic Pressure 497

Vapor Pressure Lowering **498** Vapor Pressures of Solutions Containing a Volatile (Nonelectrolyte) Solute **501** Freezing Point Depression and Boiling Point Elevation **502** Osmosis **505**

12.7 Colligative Properties of Strong Electrolyte Solutions

Strong Electrolytes and Vapor Pressure 508

Chapter in Review 510

Key Terms **510** Key Concepts **510** Key Equations and Relationships **511** Key Learning Objectives **511**

Exercises

512

507

Problems by Topic **512** Cumulative Problems Challenge Problems **516** Conceptual Problems Questions for Group Work **517** Answers to Conceptual Connections

13	Chemical Kinetics 518	
13.1	Catching Lizards 519	
13.2	The Rate of a Chemical Reaction520	
13.3	The Rate Law: The Effect of Concentration on Reaction Rate 523 Determining the Order of a Reaction 525 Reaction Order	
13.4	The Integrated Rate Law: The Dependence of Concentration on Time529The Half-Life of a Reaction533	
13.5	The Effect of Temperature on Reaction Rate 536	
	Arrhenius Plots: Experimental Measurements of the Frequency Factor and the Activation Energy 538 The Collision Model: A Closer Look at the Frequency Factor 541	
13.6	Reaction Mechanisms 542	
	Rate Laws for Elementary Steps542Rate-DeterminingSteps and Overall Reaction Rate Laws543Mechanismswith a Fast Initial Step544	
13.7	Catalysis 546	
	Homogeneous and Heterogeneous Catalysis 547 Enzymes: Biological Catalysts 548	
	Chapter in Review 551	
	Key Terms 551 Key Concepts 551 Key Equations and	

Relationships 552 Key Learning Objectives 552

595

Exercises

552

562

Problems by Topic552Cumulative Problems557Challenge Problems559Conceptual Problems560Questions for Group Work561Answers to ConceptualConnections561

14 Chemical Equilibrium

14.1	Fetal Hemoglobin and Equilibrium	563
14.2	The Concept of Dynamic Equilibrium	565
14.3	The Equilibrium Constant (K)	566
	Expressing Equilibrium Constants for Chemical Reactions 567 The Significance of the Equilibrium Constant 568 Relationships between the Equilibrium Constant and the Chemical Equation 569	
14.4	Expressing the Equilibrium Constant in Terms	
	of Pressure	571
	UNITS OF A 572	
14.5	Heterogeneous Equilibria: Reactions Involving Solids and Liquids	573
14.6	Calculating the Equilibrium Constant from Measured Equilibrium Concentrations	574
14.7	The Reaction Quotient: Predicting the Direction of Change	577
14.8	Finding Equilibrium Concentrations	579
	Finding Equilibrium Concentrations When We Are Given Equilibrium Constant and All but One of the Equilibrium Concentrations of the Reactants and Products 579	the

Finding Equilibrium Concentrations When We Are Given the Equilibrium Constant and Initial Concentrations or Pressures **580** Simplifying Approximations in Working Equilibrium Problems **584**

14.9Le Châtelier's Principle: How a System at
Equilibrium Responds to Disturbances588

The Effect of a Concentration Change on Equilibrium **588** The Effect of a Volume (or Pressure) Change on Equilibrium **590** The Effect of a Temperature Change on Equilibrium **591**

Chapter in Review 593

Key Terms **593** Key Concepts **594** Key Equations and Relationships **594** Key Learning Objectives **595**

Exercises

Problems by Topic **595** Cumulative Problems Challenge Problems **600** Conceptual Problems Questions for Group Work **601** Answers to Conceptual Connections

15Acids and Bases60215.1Heartburn60315.2The Nature of Acids and Bases60415.3Definitions of Acids and Bases605

The Arrhenius Definition 606 The Brønsted-Lowry Definition 606

15.4	Acid Strength and the Acid Ionization Constant (K_a) 60	8
	Strong Acids 608 Weak Acids 609 The Acid Ionization Constant (K_a) 610	
15.5	Autoionization of Water and pH 61	1
	The pH Scale: A Way to Quantify Acidity and Basicity 613 pOH and Other p Scales 615	
15.6	Finding the [H ₃ 0 ⁺] and pH of Strong and Weak Acid Solutions 61	6
	Strong Acids 616 Weak Acids 616 Polyprotic Acids 620 Percent Ionization of a Weak Acid 622	
15.7	Base Solutions 62	4

Strong Bases **624** Weak Bases **624** Finding the [OH⁻] and pH of Basic Solutions **626**

- 15.8 The Acid-Base Properties of Ions and Salts 627 Anions as Weak Bases 628 Cations as Weak Acids 631 Classifying Salt Solutions as Acidic, Basic, or Neutral 632 **15.9** Acid Strength and Molecular Structure 634 Binary Acids 634 Oxyacids 635
- **15.10** Lewis Acids and Bases 636

Molecules That Act as Lewis Acids 637 Cations That Act as Lewis Acids 638

Chapter in Review 639

Key Terms 639 Key Concepts 639 Key Equations and Relationships 640 Key Learning Objectives 640

Exercises

640

646

Problems by Topic 640 Cumulative Problems 643 Challenge Problems 644 Conceptual Problems 645 Questions for Group Work 645 Answers to Conceptual Connections 645

Aqueous Ionic Equilibrium

16.1	The Danger of Antifreeze	647
16.2	Buffers: Solutions That Resist pH Change	648
	Calculating the pH of a Buffer Solution 650 The Henderson-Hasselbalch Equation 651 Calculating Changes in a Buffer Solution 654 The Stoichiometry Calculation 654 The Equilibrium Calculation 655 Bur Containing a Base and Its Conjugate Acid 657	g pH ffers
16.3	Buffer Effectiveness: Buffer Range and	
	Buffer Capacity	659
	Relative Amounts of Acid and Base 659 Absolute Concentrations of the Acid and Conjugate Base 659 Buffer Range 660 Buffer Capacity 661	
16.4	Titrations and pH Curves	662
	The Titration of a Strong Acid with a Strong Base 663 The Titration of a Weak Acid with a Strong Base 666 The Titration of a Weak Base with a Strong Acid 672 The Titration of a Polyprotic Acid 672 Indicators: pH- Dependent Colors 673	
16.5	Solubility Equilibria and the Solubility Product Constant	675
	$K_{\rm sp}$ and Molar Solubility 675 $K_{\rm sp}$ and Relative Solubility 677 The Effect of a Common Ion on Solubility 677 The Effect of pH on Solubility 679	
16.6	Precipitation	680
16.7	Complex Ion Equilibria	681

Chapter in Review

Key Terms 684 Key Concepts 684 Key Equations and Relationships 684 Key Learning Objectives 685

Exercises

Problems by Topic 685 Cumulative Problems 688 Challenge Problems 690 Conceptual Problems 690 Questions for Group Work 691 Answers to Conceptual Connections 691

17	Free Energy and	
	Thermodynamics	692
17.1	Nature's Heat Tax: You Can't Win and You Can't Break Even	694
17.2	Spontaneous and Nonspontaneous Processes	695
17.3	Entropy and the Second Law of Thermodynamics Entropy 697 The Entropy Change Associated with a Change in State 702	696
17.4	Heat Transfer and Changes in the Entropy of the Surroundings	703
	The Temperature Dependence of ΔS_{surr} 704 Quantify Entropy Changes in the Surroundings 704	ring
17.5	Gibbs Free Energy	706
	The Effect of ΔH , ΔS , and T on Spontaneity 708	
17.6	Entropy Changes in Chemical Reactions: Calculating ΔS°_{rxn} Standard Molar Entropies (S°) and the Third Law of Thermodynamics 710	709
17.7	Free Energy Changes in Chemical Reactions: Calculating $\Delta G^\circ_{ m rxn}$	714
	Calculating Free Energy Changes with $\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T\Delta S^{\circ}_{rxn}$ 714 Calculating ΔG°_{rxn} w Tabulated Values of Free Energies of Formation 715 Calculating ΔG°_{rxn} for a Stepwise Reaction from the Changes in Free Energy for Each of the Steps 717 W	/ith hy

Free Energy Changes for Nonstandard States: 17.8 The Relationship between ΔG_{rxn}° and ΔG_{rxn} 719 The Free Energy Change of a Reaction Under Nonstandard Conditions 720 Standard Conditions 720 Equilibrium Conditions 721 Other Nonstandard Conditions 721

Free Energy Is "Free" 718

17.9 Free Energy and Equilibrium: Relating ΔG°_{rxn} to the **Equilibrium Constant (K)** 722

684

685

776

I-1

Chapter in Review

725

Key Terms **725** Key Concepts **726** Key Equations and Relationships **726** Key Learning Objectives **727**

Exercises

727

734

Problems by Topic 727 Cumulative Problems 730 Challenge Problems 731 Conceptual Problems 732 Questions for Group Work 732 Answers to Conceptual Connections 733

18 Electrochemistry

18.1	Pulling the Plug on the Power Grid	735
18.2	Balancing Oxidation-Reduction Equations	736
18.3	Voltaic (or Galvanic) Cells: Generating Electricity f Spontaneous Chemical Reactions Electrochemical Cell Notation 741	f <mark>rom</mark> 739
18.4	Standard Electrode Potentials	742
	Predicting the Spontaneous Direction of an Oxidation- Reduction Reaction 747 Predicting Whether a Metal V Dissolve in Acid 749	Nill
18.5	Cell Potential, Free Energy, and the Equilibrium Constant The Relationship between ΔG° and E_{cell}° 750 The Relationship between E_{cell}° and K 751	749
18.6	Cell Potential and Concentration Concentration Cells 756	753
18.7	Batteries: Using Chemistry to Generate Electricity Dry-Cell Batteries 757 Lead-Acid Storage Batteries 7 Other Rechargeable Batteries 758 Fuel Cells 759	757 758
18.8	Electrolysis: Driving Nonspontaneous Chemical Reactions with Electricity Stoichiometry of Electrolysis 763	760
18.9	Corrosion: Undesirable Redox Reactions Preventing Corrosion 766	764
	Chapter in Review Key Terms 767 Key Concepts 767 Key Equations Relationships 768 Key Learning Objectives 769	767 and
	Exercises	769
	Problems by Topic 769 Cumulative Problems 772 Challenge Problems 773 Conceptual Problems 77 Questions for Group Work 774 Answers to Concept	4 :ual

Connections 775

19 Radioactivity and Nuclear Chemistry

19.1	Diagnosing Appendicitis	777
19.2	Types of Radioactivity	778
	Alpha (α) Decay 779 Beta (β) Decay 780 Gamma Ray Emission 781 Positron Emission 781 Electron Capture 781	(γ)
19.3	The Valley of Stability: Predicting the Type of Radioactivity	783
	Magic Numbers 785 Radioactive Decay Series 785	
19.4	The Kinetics of Radioactive Decay and Radiometric Dating	785
	The Integrated Rate Law 787 Radiocarbon Dating: Usi Radioactivity to Measure the Age of Fossils and Artifacts 788 Uranium/Lead Dating 790	ng
19.5	The Discovery of Fission: The Atomic Bomb and	
	Nuclear Power	791 ,
10 6	Converting Mass to Energy: Mass Defect and	5
15.0	Nuclear Binding Energy	794
197	Nuclear Fusion: The Power of the Sun	797
19.8	The Effects of Radiation on Life	798
1010	Acute Radiation Damage 798 Increased Cancer Risk Genetic Defects 798 Measuring Radiation Exposure	798 798
19.9	Radioactivity in MedicineDiagnosis in Medicine800Radiotherapy in Medicine	800 801
	Chapter in Review	802
	Key Terms 802 Key Concepts 803 Key Equations Relationships 804 Key Learning Objectives 804	and
	Exercises	804
	Problems by Topic 804 Cumulative Problems 806 Challenge Problems 806 Conceptual Problems 807 Questions for Group Work 807 Answers to Conceptu Connections 807	ual
	Appendix I	A-1
	Appendix II	A-7
	Appendix III	4-17
	Appendix IV	4-42
	Glossary	G-1
	Credits	C-1

Index

This page intentionally left blank

Preface

To the Student

As you begin this course, I invite you to think about your reasons for enrolling in it. Why are you taking general chemistry? More generally, why are you pursuing a college education? If you are like most college students taking general chemistry, part of your answer is probably that this course is required for your major and that you are pursuing a college education so you can get a good job someday. While these are good reasons, I suggest a better one. I think the primary reason for your education is to prepare you to *live a good life*. You should understand chemistry—not for what it can *get* you—but for what it can *do* for you. Understanding chemistry, I believe, is an important source of happiness and fulfillment. Let me explain.

Understanding chemistry helps you to live life to its fullest for two basic reasons. The first is *intrinsic*: Through an understanding of chemistry, you gain a powerful appreciation for just how rich and extraordinary the world really is. The second reason is *extrinsic*: Understanding chemistry makes you a more informed citizen—it allows you to engage with many of the issues of our day. In other words, understanding chemistry makes *you* a deeper and richer person and makes your country and the world a better place to live. These reasons have been the foundation of education from the very beginnings of civilization.

How does chemistry help prepare you for a rich life and conscientious citizenship? Let me explain with two examples. My first one comes from the very first page of Chapter 1 of this book. There, I ask the following question: What is the most important idea in all of scientific knowledge? My answer to that question is this: The properties of matter are determined by the properties of molecules and atoms. That simple statement is the reason I love chemistry. We humans have been able to study the substances that compose the world around us and explain their behavior by reference to particles so small that they can hardly be imagined. If you have never realized the remarkable sensitivity of the world we can see to the world we *cannot*, you have missed out on a fundamental truth about our universe. To have never encountered this truth is like never having read a play by Shakespeare or seen a sculpture by Michelangelo-or, for that matter, like never having discovered that the world is round. It robs you of an amazing and unforgettable experience of the world and the human ability to understand it.

My second example demonstrates how science literacy helps you to be a better citizen. Although I am largely sympathetic to the environmental movement, a lack of science literacy within some sectors of that movement, and the resulting anti-environmental backlash, creates confusion that impedes real progress and opens the door to what could be misinformed policies. For example, I have heard conservative pundits say that volcanoes emit more carbon dioxide—the most significant greenhouse gas—than does petroleum combustion. I have also heard a liberal environmentalist say that we have to stop using hairspray because it is causing holes in the ozone layer that will lead to global warming. Well, the claim about volcanoes emitting more carbon dioxide than petroleum combustion can be refuted by the basic tools you will learn to use in Chapter 4 of this book. We can easily show that volcanoes emit only 1/50th as much carbon dioxide as petroleum combustion. As for hairspray depleting the ozone layer and thereby leading to global warming: The chlorofluorocarbons that deplete ozone have been banned from hairspray since 1978, and ozone depletion has nothing to do with global warming anyway. People with special interests or axes to grind can conveniently distort the truth before an ill-informed public, which is why we all need to be knowledgeable.

So this is why I think you should take this course. Not just to satisfy the requirement for your major, and not just to get a good job someday, but also to help you to lead a fuller life and to make the world a little better for everyone. I wish you the best as you embark on the journey to understand the world around you at the molecular level. The rewards are well worth the effort.

To the Professor

First and foremost, thanks to all of you who adopted this book in its first and second editions. You helped to make this book successful and I am grateful beyond words. Second, I have listened carefully to your feedback on the previous edition. The changes you see in this edition are a direct result of your input, as well as my own experience in using the book in my general chemistry courses. If you have acted as a reviewer or have contacted me directly, you are likely to see your suggestions reflected in the changes I have made. The goal of this edition remains the same: *to present a rigorous and accessible treatment of general chemistry in the context of relevance.*

Teaching general chemistry would be much easier if all of our students had exactly the same level of preparation and ability. But alas, that is not the case. Even though I teach at a relatively selective institution, my courses are populated with students with a range of backgrounds and abilities in chemistry. The challenge of successful teaching, in my opinion, is therefore figuring out how to instruct and challenge the best students while not losing those with lesser backgrounds and abilities. My strategy has always been to set the bar relatively high, while at the same time providing the motivation and support necessary to reach the high bar. That is exactly the philosophy of this book. We do not have to compromise away rigor in order to make chemistry accessible to our students. In this book, I have worked hard to combine rigor with accessibility-to create a book that does not dilute the content, yet can be used and understood by any student willing to put in the necessary effort.

Principles of Chemistry: A Molecular Approach is first a *student-oriented* book. My main goal is to motivate students and get them to achieve at the highest possible level. As we all know, many students take general chemistry because it is a requirement; they do not see the connection between chemistry and their lives or their intended careers. *Principles of Chemistry: A Molecular Approach* strives to make those connections consistently and effectively. Unlike other books, which often teach chemistry as something that happens only in the laboratory or in industry, this book teaches chemistry in the context of relevance. It shows students *why* chemistry is important to them, to their future careers, and to their world.

Second, Principles of Chemistry: A Molecular Approach is a *pedagogically-driven* book. In seeking to develop problem-solving skills, a consistent approach (Sort, Strategize, Solve, and Check) is applied, usually in a two- or three-column format. In the two-column format, the left column shows the student how to analyze the problem and devise a solution strategy. It also lists the steps of the solution, explaining the rationale for each one, while the right column shows the implementation of each step. In the three-column format, the left column outlines a general procedure for solving an important category of problems that is then applied to two side-by-side examples. This strategy allows students to see both the general pattern and the slightly different ways in which the procedure may be applied in differing contexts. The aim is to help students understand both the concept of the problem (through the formulation of an explicit conceptual plan for each problem) and the solution to the problem.

Third, Principles of Chemistry: A Molecular Approach is a visual book. Wherever possible, images are used to deepen the student's insight into chemistry. In developing chemical principles, multipart images help to show the connection between everyday processes visible to the unaided eye and what atoms and molecules are actually doing. Many of these images have three parts: macroscopic, molecular, and symbolic. This combination helps students to see the relationships between the formulas they write down on paper (symbolic), the world they see around them (macroscopic), and the atoms and molecules that compose that world (molecular). In addition, most figures are designed to teach rather than just to illustrate. They are rich with annotations and labels intended to help the student grasp the most important processes and the principles that underlie them. The resulting images contain significant amounts of information but are also uncommonly clear and quickly understood.

Fourth, *Principles of Chemistry: A Molecular Approach* is a "*big picture*" book. At the beginning of each chapter, a short introduction helps students to see the key relationships between the different topics they are learning. Through focused and concise narrative, I strive to make the basic ideas of every chapter clear to the student. Interim summaries are provided at selected spots in the narrative, making it easier to grasp (and review) the main points of important discussions. And to make sure that students never lose sight of the forest for the trees, each chapter includes several *Conceptual Connections*, which ask them to think about concepts and solve problems without doing any math. I want students to learn the concepts, not just plug numbers into equations to churn out the right answer. Principles of Chemistry: A Molecular Approach is, lastly, a book that delivers the core of the standard chemistry curriculum, without sacrificing depth of coverage. Through our research, we have determined the topics that most faculty do not teach and we have eliminated them. When writing a brief book, the temptation is great to cut out the sections that show the excitement and relevance of chemistry; we have not done that here. Instead, we have cut out pet topics that are often included in books simply to satisfy a small minority of the market. We have also eliminated extraneous material that does not seem central to the discussion. The result is a lean book that covers core topics in depth, while still demonstrating the relevance and excitement of these topics.

I hope that this book supports you in your vocation of teaching students chemistry. I am increasingly convinced of the importance of our task. Please feel free to email me with any questions or comments about the book.

> Nivaldo J. Tro tro@westmont.edu

What's New in This Edition?

The third edition has been extensively revised and contains many more small changes than I can detail here. Below is a list of the most significant changes from the previous edition.

- More robust media components have been added, including 80 Interactive Worked Examples, 39 Key Concept Videos, 14 additional Pause & Predict videos, 33 PHET simulations, and 5 new Mastering simulations with tutorials.
- Each chapter now has a 10–15 question multiple-choice end-of-chapter Self-Assessment Quiz. Since many colleges and universities use multiple-choice exams, and because standardized final exams are often multiple choice, students can use these quizzes to both assess their knowledge of the material in the chapter and to prepare for exams. These quizzes are also available on mobile devices.
- Approximately 100 new end-of-chapter group work questions have been added to encourage small group work in or out of the classroom.
- Approximately 45 new end-of-chapter problems have been added.
- New conceptual connections have been added and many from the previous edition have been modified. In addition, to support active, in class, learning, these questions are now available in Learning Catalytics.
- All data have been updated to the most recent available. See for example:

Section 1.7 *The Reliability of a Measurement* in which the data in the table of carbon monoxide concentrations in Los Angeles County (Long Beach) have been updated.

Figure 4.2 *Carbon Dioxide Concentrations in the Atmosphere* is updated to include information through 2013.

Figure 4.3 *Global Temperature* is updated to include information through 2013.

Figure 4.19 U.S. Energy Consumption is updated to include the most recent available information.

- Many figures and tables have been revised for clarity. See, for example:
 - Figure 3.6 Metals Whose Charge Is Invariant in Section 3.5. This replaces Table 3.2 Metals Whose Charge Is Invariant from One Compound to Another.
 - The weather map in Section 5.2 has been replaced, and the caption for the weather map has been simplified and linked more directly to the text discussion.
 - Figure 7.3 *Components of White Light* has been replaced with a corrected image of light passing through a prism.
 - Figure 7.4 *The Color of an Object* and Figure 7.17 *The Quantum-Mechanical Strike Zone* both have updated photos.
 - The orbital diagram figure in Section 7.5 *Quantum Mechanics and the Atom* that details the various principal levels and sublevels has been replaced with an updated version that is more student-friendly and easier to navigate.
 - Figure 8.2 *Shielding and Penetration* is modified so that there is a clear distinction between parts a and b.
 - Figure 10.15 *Molecular Orbital Energy Diagrams for Second-Row Homonuclear Diatomic Molecules* now has magnetic properties and valence electron configuration information.
 - Figure 12.10 Solubility and Temperature. Data for Na_2SO_4 have been deleted from the graph, and data $Ce_2(SO_4)_3$ have been added to the graph.
 - Figure 13.11 *Thermal Energy Distribution* is modified. It is now noted in the caption that E_a is a constant and does not depend on temperature; new notations have also been added to the figure.
 - Table 15.5 Acid Ionization Constants for Some Monoprotic Weak Acids at 25 °C has been modified to include pK_a values.
 - The unnumbered photo of a fuel cell car in Section 18.1 *Pulling the Plug on the Power Grid* has been replaced with an updated image of a newer fuel cell car.
- In Section 10.5 and throughout Chapter 11, the use of electrostatic potential maps has been expanded. See, for example, Figures 11.6, 11.7, 11.9, and 11.10.
- In Section 10.8 *Molecular Orbital Theory: Electron Delocalization* in the subsection on *Linear Combination of Atomic Orbitals (LCAO)*, a discussion of molecular orbital electron configuration has been added.
- New chapter-opening art, briefer introductory material, and a new first section (11.1 *Water, No Gravity*) replace Section 11.1.
- In Section 13.4 *The Integrated Rate Law: The Dependence* of *Concentration on Time*, the derivation to integrate the differential rate law to obtain the first-order integrated rate law is now shown in a margin note.
- The format for all the ICE tables is new in Chapters 14, 15, and 16; the format has been modified to make them easier to read.

- A new section entitled *The Titration of a Polyprotic Acid* has been added to Section 16.4 *Titrations and Curves*. Content includes new Figure 16.8 *Titration Curve: Diprotic Acid with Strong Base*.
- Some new in-chapter examples have been added, including Example 4.14 Writing Equations for Acid–Base Reactions Involving a Weak Acid and Example 9.9 Drawing Resonance Structures and Assigning Formal Charge for Organic Compounds.

Acknowledgments

The book you hold in your hands bears my name on the cover, but I am really only one member of a large team that carefully crafted this book. Most importantly, I thank my editor, Terry Haugen, who has become a friend and colleague. Terry is a skilled and competent editor. He has given me direction, inspiration, and most importantly, loads of support. I am just as grateful for my program manager, Jessica Moro, and project manager, Beth Sweeten, who have worked tirelessly behind the scenes to bring this project to completion. I continue to be grateful for Jennifer Hart in her new role overseeing development. Jennifer, your guidance and wisdom are central to the success of my projects, and I am eternally grateful. I am also grateful to Caitlin Falco who helped with organizing reviews, as well as numerous other tasks associated with keeping the team running smoothly. I also thank Erin Mulligan, who has now worked with me on many projects. Erin is an outstanding developmental editor who not only worked with me on crafting and thinking through every word but is now also a friend and fellow foodie. I am also grateful to Adam Jaworski. Adam has become a fantastic leader at Pearson and a friend to me. Thanks also to Dave Theisen, who has been selling my books for 15 years and has become a great friend. Dave, I appreciate your tireless efforts, your professionalism, and your in-depth knowledge of my work. And of course, I am continually grateful for Paul Corey, with whom I have now worked for over 14 years and a dozen books. Paul is a man of incredible energy and vision, and it is my great privilege to work with him. Paul told me many years ago (when he first signed me on to the Pearson team) to dream big, and then he provided the resources I needed to make those dreams come true. Thanks, Paul. I would also like to thank my first editor at Pearson, Kent Porter-Hamann. Kent and I spent many good years together writing books, and I continue to miss her presence in my work.

I am also grateful to my marketing managers, Will Moore and Chris Barker, who have helped to develop a great marketing campaign for my books and are all good friends. I am deeply grateful to Gary Hespenheide for crafting the design of this text. I would like to thank Beth Sweeten and the rest of the Pearson production team. I also thank Francesca Monaco and her co-workers at CodeMantra. I am a picky author and Francesca is endlessly patient and a true professional. I am also greatly indebted to my copy editor, Betty Pessagno, for her dedication and professionalism, and to Lauren McFalls, for her exemplary photo research. I owe a special debt of gratitude to Quade and Emiko Paul, who continue to make my ideas come alive in their art. Thanks also to Derek Bacchus for his work on the cover and with design.

I would like to acknowledge the help of my colleagues Allan Nishimura, Michael Everest, Kristi Lazar, Steve Contakes, David Marten, and Carrie Hill, who have supported me in my department while I worked on this book. Double thanks to Michael Everest for also authoring the Questions for Group Work. I am also grateful to those who have supported me personally. First on that list is my wife, Ann. Her love rescued a broken man fifteen years ago and without her, none of this would have been possible. I am also indebted to my children, Michael, Ali, Kyle, and Kaden, whose smiling faces and love of life always inspire me. I come from a large Cuban family whose closeness and support most people would envy. Thanks to my parents, Nivaldo and Sara; my siblings, Sarita, Mary, and Jorge; my siblings-in-law, Nachy, Karen, and John; my nephews and nieces, Germain, Danny, Lisette, Sara, and Kenny. These are the people with whom I celebrate life.

I would like to thank all of the general chemistry students who have been in my classes throughout my years as a professor at Westmont College. You have taught me much about teaching that is now in this book. I would also like to express my appreciation to Michael Tro, who also helped in manuscript development, proofreading, and working new problems.

Lastly, I am indebted to the many reviewers whose ideas are embedded throughout this book. They have corrected me, inspired me, and sharpened my thinking on how best to teach this subject we call chemistry. I deeply appreciate their commitment to this project. Thanks also to Frank Lambert for helping us all to think more clearly about entropy and for his review of the entropy sections of the book. Last but by no means least, I would like to record my gratitude to Brian Gute, Milton Johnston, Jessica Parr, and John Vincent whose alertness, keen eyes, and scientific astuteness help make this a much better book.

Reviewers

Patrice Bell, Georgia Gwinnett College Sharmaine Cady, East Stroudsburg University James Cleveland, Northeast State Community College Chris Collinson, Rochester Institute of Technology Charlie Cox, Stanford University Brent Cunningham, James Madison University Bridget Decker, University of Wyoming-Laramie William Deese, Louisiana Tech University Dawn Del Carlo, University of Northern Iowa Steve Everly, Lincoln Memorial University Daniel Finnen, Shawnee State University Paul Fischer, Macalester College David Geiger, The State University of New York (Geneseo) Patricia Goodson, University of Wyoming Burt Hollandsworth, Harding University Matthew Horn, Utah Valley University Mary Elizabeth Kinsel, Southern Illinois University Gerald Korenowski, Rensselaer Polytechnic Institute Hoitung Leung, University of Virginia

Clifford Padgett, Armstrong State University Andrew Price, Temple University Jennifer Schwartz Poehlmann, Stanford University Anthony Smith, Walla Walla University Thomas Sorensen, University of Wisconsin (Milwaukee) Kara Tierney, Monroe Community College Rosie Walker, Metropolitan State University of Denver

Accuracy Reviewers

Brian Gute, University of Minnesota, Duluth Milton Johnston, University of South Florida Jessica Parr, University of Southern California John Vincent, University of Alabama

Previous Edition Reviewers

Patricia G. Amateis, Virginia Tech T.J. Anderson, Francis Marion University Paul Badger, Robert Morris University Yiyan Bai, Houston Community College Maria Ballester, Nova Southeastern University Rebecca Barlag, Ohio University Shuhsien Batamo, Houston Community College (Central Campus) Craig A. Bayse, Old Dominion University Maria Benavides, University of Houston, Downtown Charles Benesh, Wesleyan College Silas C. Blackstock, University of Alabama Justin Briggle, East Texas Baptist University Ron Briggs, Arizona State University Katherine Burton, Northern Virginia Community College David A. Carter, Angelo State University Linda P. Cornell, Bowling Green State University, Firelands Charles T. Cox, Jr., Georgia Institute of Technology David Cunningham, University of Massachusetts, Lowell Michael L. Denniston, Georgia Perimeter College Ajit S. Dixit, Wake Technical Community College David K. Erwin, Rose-Hulman Institute of Technology Giga Geme, University of Central Missouri Vincent P. Giannamore, Nicholls State University Pete Golden, Sandhills Community College Robert A. Gossage, Acadia University Susan Hendrickson, University of Colorado (Boulder) Angela Hoffman, University of Portland Andrew W. Holland, Idaho State University Narayan S. Hosmane, Northern Illinois University Jason C. Jones, Francis Marion University Jason A. Kautz, University of Nebraska, Lincoln Chulsung Kim, Georgia Gwinnett College Scott Kirkby, East Tennessee State University Richard H. Langley, Stephen F. Austin State University Christopher Lovallo, Mount Royal College Eric Malina, University of Nebraska, Lincoln David H. Metcalf, University of Virginia Dinty J. Musk, Jr., Ohio Dominican University Edward J. Neth, University of Connecticut MaryKay Orgill, University of Nevada, Las Vegas

Gerard Parkin, Columbia University BarJean Phillips, Idaho State University Nicholas P. Power, University of Missouri Changyong Qin, Benedict College William Quintana, New Mexico State University Valerie Reeves, University of New Brunswick Dawn J. Richardson, Collin College Thomas G. Richmond, University of Utah Melinda S. Ripper, Butler County Community College Jason Ritchie, The University of Mississippi Christopher P. Roy, Duke University Jamie Schneider, University of Wisconsin (River Falls) John P. Scovill, Temple University Thomas E. Sorensen, University of Wisconsin, Milwaukee Vinodhkumar Subramaniam, East Carolina University Dennis Swauger, Ulster County Community College Ryan Sweeder, Michigan State University Chris Syvinski, University of New England Dennis Taylor, Clemson University David Livingstone Toppen, California State University, Northridge Harold Trimm, Broome Community College Tommaso A. Vannelli, Western Washington University Kristofoland Varazo, Francis Marion University Susan Varkey, Mount Royal College Joshua Wallach, Old Dominion University Clyde L. Webster, University of California, Riverside

Wayne Wesolowski, *University of Arizona* Kurt Winkelmann, *Florida Institute of Technology* Edward P. Zovinka, *Saint Francis University*

Previous Edition Accuracy Reviewers

Margaret Asirvatham, University of Colorado, Boulder Rebecca Barlag, Ohio University Angela Hoffman, University of Portland Louis Kirschenbaum, University of Rhode Island Richard Langley, Stephen F. Austin State University Kathleen Thrush Shaginaw, Particular Solutions, Inc. Sarah Siegel, Gonzaga University Steven Socol, McHenry County College

Focus Group Participants

Yiyan Bai, Houston Community College Silas Blackstock, University of Alabama Jason Kautz, University of Nebraska (Lincoln) Michael Mueller, Rose-Hulman Institute of Technology Tom Pentecost, Grand Valley State University Andrew Price, Temple University Cathrine Reck, Indiana University Sarah Siegel, Gonzaga University Shusien Wang-Batamo, Houston Community College Lin Zhu, Indiana University–Purdue University Indianapolis

Chemistry through Relevancy

Chemistry is relevant to every process occurring around us at every second. Niva Tro helps students understand this connection by weaving specific, vivid examples throughout the text and media that tell the story of chemistry. Every chapter begins with a brief story showing how chemistry is relevant to all people, at every moment.

4400 LINE

Oxidation-Reduction Reaction without Oxygen 2 Na(s) + Cl₂(g) - $\rightarrow 2 \operatorname{NaCl}(s)$ Electrons are transferred from sodium to chlorine, forming sodium chloride Sodium is oxidized and chlorine is reduced 2 Na(s) Electror transfer $Cl_2(g)$ NaCl(s) ▲ FIGURE 4.17 Oxidation-Reduction without Oxygen When sodium reacts with chlorine, electrons are transferred from the sodium to the chlorine, resulting in the formation of sodium chloride. In this redox reaction, sodium is oxidized and chlorine is reduced. The reaction between sodium and oxygen forms other oxides as well.

Visualizing Chemistry

dinary

Student-friendly, multipart images include macroscopic, molecular, and symbolic perspectives with the goal of connecting you to what you see and experience (macroscopic) with the molecules responsible for that world (molecular) and with the way chemists represent those molecules (symbolic). Illustrations include extensive labels and annotations to highlight key elements and to help differentiate the most critical information (white box) to secondary information (beige box).

Interactive Problem-Solving Strategy

A unique yet consistent step-by-step format encourages logical thinking throughout the problem-solving process rather than simply memorizing formulas.

EXAMPLE 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C₆H₁₂O₆) according to the reaction: $6 \text{ CO}_2(g) + 6 \text{ H}_2\text{O}(I) \xrightarrow{\text{sunlight}} 6 \text{ O}_2(g) + \text{C}_6\text{H}_{12}\text{O}_6(aq)$ Suppose a particular plant consumes 37.8 g CO2 in one week. Assuming that there is more than enough water present to react with all of the CO2, what mass of glucose (in grams) can the plant synthesize from the CO2? SORT The problem gives the mass GIVEN 37.8 g CO2 of carbon dioxide and asks you to FIND g $C_6H_{12}O_6$ find the mass of glucose that can be produced. STRATEGIZE The conceptual plan fol-CONCEPTUAL PLAN lows the general pattern of mass g CO₂ mol CO₂ mol C₆H₁₂O₆ g C₆H₁₂O₆ $A \rightarrow \text{amount } A \text{ (in moles)} \rightarrow$ amount B (in moles) \rightarrow mass B 1 mol CO₂ 1 mol C₆H₁₂O₆ 180.16 g C₆H₁₂O₆ From the chemical equation, you 44.01 g CO₂ 6 mol CO2 1 mol C6H12O6 can deduce the relationship **RELATIONSHIPS USED** between moles of carbon dioxide molar mass $\rm CO_2 = 44.01~g/mol$ and moles of glucose. Use the 6 mol CO2:1 mol C6H12O6 molar masses to convert between molar mass $C_6H_{12}O_6=180.16~g/mol$ grams and moles. SOLVE Follow the conceptual plan SOLUTION $\frac{180.16 \text{ g } \text{C}_6 \text{H}_{12} \text{O}_6}{\text{ }} = 25.8 \text{ g } \text{C}_6 \text{H}_{12} \text{O}_6$ 1 mol CO2 $\times \frac{1 \text{ mol } C_6 H_{12} O_6}{1 \text{ mol } C_6 H_{12} O_6} \times$ to solve the problem. Begin with g 37.8 g· $eo_2 \times \frac{1}{44.01}$ g· eo_2 CO₂ and use the conversion factors 6 mol CO2 1 mol C₆H₁₂O₆ to arrive at g C₆H₁₂O₆. CHECK The units of the answer are correct. The magnitude of the answer (25.8 g) is less than the initial mass of CO_2 (37.8 g). This is reasonable because each carbon in CO_2 has two oxygen atoms associated with it, while in $C_6H_{12}O_6$

Icons appear next to examples indicating a digital version is available in the etext and on mobile devices via a QR code located here, and on the back cover of your textbook.

FOR PRACTICE 4.1

Magnesium hydroxide, the active ingredient in milk of magnesia, neutralizes stomach acid, primarily HCI, accorc Society reaction:

each carbon has only one oxygen atom associated with it and two hydrogen atoms, which are much lighter than oxygen. Therefore the mass of glucose produced should be less than the mass of carbon dioxide for this reaction.

 $Mg(OH)_{2}(a\alpha) + 2 HCI(a\alpha) \rightarrow 2 H_{2}O(l) + MgCI_{2}(a\alpha)$

What mass of HCI, in grams, is neutralized by a dose of milk of magnesia containing 3.26 g Mg(OH)₂?

NEW! 80 Interactive Worked Examples make Tro's unique problem-solving strategies interactive, bringing his award-winning teaching directly to all students using his text. In these digital, mobile versions, students are instructed how to break down problems using Tro's proven Sort, Strategize, Solve, and Check technique.

Find: g	Colleon	
and the second se	100	
g CO ₂ - m		6H12O6 → g G6H12O6

A Focus on Conceptual Understanding

Key Concept Videos

NEW! 39 Key Concept Videos combine artwork from the textbook with both 2D and 3D animations to create a dynamic on-screen viewing and learning experience. These short videos include narration and brief live-action clips of author Niva Tro explaining the key concepts of each chapter.

KEY CONCEPT VIDEO VSEPR Theory: The Effect of Lone Pairs

VSEPR Theory: The Effect of Lone Pairs

Conceptual Connections

Conceptual Connections are strategically placed to reinforce conceptual understanding of the most complex concepts.

CONCEPTUAL 5.5 PRESSURE AND NUMBER OF MOLES

Nitrogen and hydrogen react to form ammonia according to the equation: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

Consider the representations shown here of the initial mixture of reactants and the resulting mixture after the reaction has been allowed to react for some time. If the volume is kept constant, and nothing is added to the reaction mixture, what happens to the

course of the reaction?

- (a) The pressure increases.
- (b) The pressure decreases.
- (c) The pressure does not change.

KAND ΔG°_{rxn}

The reaction $A(g) \rightleftharpoons B(g)$ has an equilibrium constant that is less than one. What can you conclude about ΔG_{rxn}° for the reaction? (**b**) $\Delta G_{\rm ryn}^{\circ} < 0$ (a) $\Delta G_{\rm ryn}^{\circ} = 0$ (c) $\Delta G_{ryn}^{\circ} > 0$

Enhanced **End-of-Chapter Material**

NEW! Self Assessment Quizzes contain **10–15** multiple-choice questions, authored in the ACS-exam and MCAT style to help students optimize the use of quizzing to improve their understanding and class performance.

The Self Assessment Quizzes are also assignable in **MasteringChemistry and** contain wrong-answer feedback as well as links to the eText.

Self-Assessment

CONCEPTUAL

- O1. A chemist mixes sodium with water and witnesses a violent reaction between the metal and water. This is best classified as: a. an observation b. a law **d.** a theory c. a hypothesis
- Q2. This image represents a particulate view of a sample of mat-
- ter. Classify the sample according to its composition.

- a. The sample is a pure element
- b. The sample is a homogeneous mixture
- c. The sample is a compound.
- d. The sample is a heterogeneous mixture.
- Q3. Which change is a physical change? a. wood burning b. iron rusting
- c. dynamite exploding d. gasoline evaporating Q4. Which property of rubbing alcohol is a chemical property?
- a. its density (0.786 g/cm³)
 b. its flammability
 c. its boiling point (82.5 °C)
 d. its melting point (-89 °C)
- Q5. Convert 85.0 °F to K.
- **a.** 181.1 K **b.** 358 K **c.** 29.4 K **d.** 302.6 K **Q6.** Express the quantity 33.2×10^{-4} m in mm.
 - a. 33.2 mm **b.** 3.32 mm
- c. 0.332 mm **d.** $3.32 \times 10^{-6} \text{ mm}$ Q7. Determine the mass of a 1.75 L sample of a liquid that has a
 - density of 0.921 g/mL.
 - **a.** 1.61×10^3 g **b.** $1.61 \times 10^{-3} \text{ g}$ c. 1.90×10^3 g **d**. 1.90×10^{-3} or
- O8. Perform the calculation to the correct number of significant
- figures.
- 43.998 × 0.00552/2.002 **a.** 0.121 **b.** 0.12 **c.** 0.12131 **d.** 0.1213
- **O9.** Perform the calculation to the correct number of significant figures.
- (8.01 7.50)/3.002 a. 0.1698867 b. 0.17 **c.** 0.170 **d.** 0.1700
- Q10. Convert 1285 cm² to m².
 - **a.** $1.285 \times 10^7 \text{ m}^2$ **b.** 12.85 m^2
 - c. 0.1285 m²
 - d. $1.285\,\times\,10^5\,m^2$
- Q11. The first diagram shown here depicts a compound in its liquid state. Which of the diagrams that follow best depicts the compound after it has evaporated into a gas?

Q12. Three samples, each of a different substance, are weighed and their volume is measured. The results are tabulated here. List the substances in order of decreasing density.

		Mass	Volume				
	Substance I	10.0 g	10.0 mL				
	Substance II	10.0 kg	12.0 L				
	Substance III	12.0 mg	10.0 µL				
	a. III > II > I	b. I >	$\rm II > III$				
	c. III > I > II	d. II >	I > III				
Q13.	A solid metal sphere has a radius of 3.53 cm and a mass of 1.796 kg. What is the density of the metal in g/cm ³ ? (The volume of a sphere is $V = \frac{4}{3}\pi r^3$.)						
	a 3						

- a. 34.4 g/cm³ **b.** 0.103 g/cm² c. 121 g/cm3 d. 9.75 g/cm3
- Q14. A European automobile's gas mileage is 22 km/L. Convert this quantity to miles per gallon.
 - **b.** $1.3 \times 10^2 \, \text{mi/gal}$ a. 9.4 mi/gal
- **c.** 52 mi/gal **d.** 3.6 mi/gal Q15. A wooden block has a volume of 18.5 in³. What is its volume in cm3?
 - **a.** 303 cm³ **b.** 47.0 cm³ c. 1.13 cm³
 - **d.** 7.28 cm³

Answers: 1:a; 2:c; 3:d; 4:b; 5:d; 6:b; 7:a; 8:a; 9:b; 10:c; 11:a; 12:c; 13:d; 14:c; 15:a

Active and Adaptive

Personalize Learning with MasteringChemistry®

MasteringChemistry[®] from Pearson is the leading online homework, tutorial, and assessment system, designed to improve results by engaging students before, during, and after class with powerful content. Instructors ensure students arrive ready to learn by assigning educationally effective content before class, and encourage critical thinking and retention with in-class resources such as Learning Catalytics™. Students can further master concepts after class through traditional and adaptive homework assignments that provide hints and answer-specific feedback. The Mastering gradebook records scores for all automatically graded assignments in one place, while diagnostic tools give instructors access to rich data to assess student understanding and misconceptions.

Mastering brings learning full circle by continuously adapting to each student and making learning more personal than ever—before, during, and after class.

BEFORE CLASS

Dynamic Study Modules

Dynamic Study Modules are designed to enable students to study effectively on their own by helping them quickly access the information they need to be more successful on quizzes and exams. Utilizing a dynamic process of test-learn-retest, these modules adjust to the needs of each individual student and enable mastery of the material. They can be accessed on smartphones, tablets, or computers, and the results can be tracked in the Mastering Gradebook.

DURING CLASS

Learning Catalytics[™]

Learning Catalytics is a *bring your own device* student engagement, assessment, and classroom intelligence system. With Learning Catalytics, instructors can:

- Assess students in real time, using open-ended tasks to probe student understanding.
- Understand immediately where students are and adjust your lecture accordingly.
- Improve your students' critical-thinking skills.
- Access rich analytics to understand student performance.
- Add your own questions to make Learning Catalytics fit your course exactly.
- Manage student interactions with intelligent grouping and timing.

Learning Catalytics is a technology that has grown out of twenty years of cutting edge research, innovation, and implementation of interactive teaching and peer instruction.

AFTER CLASS

Tutorials

Tutorials, which feature specific wrong-answer feedback, hints, and a wide variety of educationally effective content, guide your students through the toughest topics in chemistry. The hallmark Hints and Feedback offer instruction similar to what students would experience in an office hour visit, allowing them to learn from their mistakes without being given the answer.

Item Type: Tutorial Difficulty: 3 Time: 12m Le	aming Outcomes + Contact the Publisher Manage this Item: Standard	View Rando	omized	٠
\pm Titration of Weak Acid with Strong Base A certain weak acid, IIA, with a $K_{\rm a}$ value of 5.61 \times 10 4 , is titrated with NaOH.	Part A A solution is made by mixing 9:00mmod (millimoles) of HA and 3:00mmod of the strong base. What is the resulting Express the pH numerically to two decimal places. Express the pH numerically to two decimal places. Image: pH = 0,000 million (0,000 million) Submit: Heids Mr.Answerix Given Up Terview Part Incorrect; Try Again Be aure to take the log of [A]/[HA];	pH?		
	Part 8 More store gase is added until the equivalence point is reached. What is the pH of this solution at the equivalence point is reached. What is the pH of this solution at the equivalence point is reached. What is the pH of this solution at the equivalence point is reached. What is the pH of this solution at the equivalence point is reached. What is the pH of this solution at the equivalence point is reached. What is the pH of this solution at the equivalence point is reached. What is the pH of this solution at the equivalence point is reached. Express the pH numerically to two decimal places. pH =	oint if the to	otal	

Adaptive Follow-up Assignments in MasteringChemistry®

Instructors are given the ability to assign adaptive follow-up assignments to students for Principles of Chemistry. Adaptive follow-ups are personalized assignments that pair Mastering's powerful content with Knewton's adaptive learning engine to provide personalized help to students before misconceptions take hold. These assignments address topics students struggled with on assigned

homework, including core prerequisite topics.

	C session.masteringchemistry.com/myct/itemView?preview=item@cassignmentProblemID=29082290
	BLB12 Expect in an Ariatin Mayo, Instructor mail Case
Chapter 17 Adaptive Follow-Up	17 Additional Aspects of Aqueous Equil. ± Titration of Strong Acid with Strong Base
	Item Type: Tutorial Difficulty: 2 Time: 6m Learning Outcomes * Contact the Manage this Item: Standard View 💌
Chapter 17 Adaptive Follow-Up Dus: 1:45pm on Sunday, September 8, 2013 Parent Asaignment: Chapter 17 Cuestion Sets: 3 This Adaptive Follow-Up assignment is designed specifically for you based on your por system analyzes your responses and personalizes such question set to focus your stud You will receive no credit for items you complete after the assignment is due. Car an Belloy C ULESTION SET 1 C Creating a Buffer Solution Incomplete C Tration of Strong Acid with Strong Base Incomplete Proclipitation Incomplete	Thration of Strong Acid with Strong Bese 100 mL of 200 <i>M</i> HCI is strated with 0 200 <i>M</i> NAOH Part A What is the pit of the solution after 50.0 mL of base has been added? Express the pit numerically. <i>p</i> H = 1.30 <i>p</i> H = 1.
QUESTION SET 2	
QUESTION SET 3	e Pterious item
SCORE SUMMARY You will receive a score when you have completed more items. For more detailed information about your score, visit the Scores tab and click on your score for this assignment.	0 / 5 points 0.0%

MasteringChemistry® for Instructors www.masteringchemistry.com

The Mastering platform was developed by scientists for science students and instructors. Mastering has been refined from data-driven insights derived from over a decade of real-world use by faculty and students.

Gradebook

Every assignment is automatically graded. Shades of red highlight struggling students and challenging assignments.

Gradebook Diagnostics

This screen provides you with your favorite diagnostics. With a single click, charts summarize the most difficult problems, vulnerable students, grade distribution, and even score improvement over the course.

Learning Outcomes

Let Mastering do the work in tracking student performance against your learning outcomes:

- Add your own or use the publisher provided learning outcomes.
- View class performance against the specified learning outcomes.
- Export results to a spreadsheet that you can further customize and share with your chair, dean, administrator, or accreditation board.

Gradebook											Manage	IF Manuel	anning De		. France
											a manage	E XIER.L	rarning os	tcome	a asimi
Filter * Show	ing Score in A	MI Categ	pories fi	r All Stude	nta										
Score Time	Difficulty														
Students per page:	100 🛩														
HAME	Introd.gy	Ch 2		ch3	Leb 2	Ch 4	ChS	Ch 6	Ch 7a	Chapter 7b	Leb 4	Chil	Ch 9	Ch 12	TOTAL
Class Average	1	. (1	75.4	0.69	62.6	88.1	09.5	06.7	91.6	83.7	90.0	08.4	11.7	1	24.5
Last01, First0		1	14.4	73.3	83.7	102	99.9	0.0	95.8	101	100	0.0	87.4	^	46,9
Last02, First0_		-	10.3	64.9	92.9	99.0	49.5	96.2	72.9	47.5	90.0	98.9	66.2		26.2
Last03, First0			73.6	46.0	61.9	104	102	94.9	85.0	100	95.0	99.7	67.3		27.0
Last04, First0_	1.1	-	12.5	53.8	0.0	34.3	86.3	85.3	80.0	83.4	90.0	99.2	87.0		30.3
Lastos, Firsto	2	- 3	78.9	69.3	79.6	99.0	97.0	05.2	82.5	34.6	95.0	90.2	87.7		31.9
Last07, First0_			17.9	86.7	51.8	101	96.1	95.9	90.0	76.7	95.0	84.8	70.6		23.2
Laston, Firsto			14.4	70.7	92.9	15.3	99.0	100	95.0	100	100	102	89.8		36.7
Lastos, Firsto		+	56.2	70.0	76.8	104	100	90.8	78.3	78.8	95.0	94.3	82.2		31.9
Last10, First1_			76.1	70.0	78.6	105	54.6	54.9	92.1	91.9	100	88.9	87.8		19.0

MasteringChemistry*

Cr

1 Start	2 Select Content	3 Organize Content	Specify Outcomes	5 Preview and Assign			
i see studer	it results organized by learnin	j outcomes, choose learning ou	tcomes to associate with these	terns. <u>Learn more.</u>			
lat using lea	ming outcomes? Skip this ste	L					
] Hide Provi	ided Learning Outcomes			O Add/Edit.M	y Learning Outcom		
ITEM Liber	c.Decocristional		LEARNING OUTCOMES				
Instation Energy			Global. Demonstrate the at Use the electron configurat	Choose_ •			
Election Configurations			Olobal: Demonstrate the ability to think critically and employ critical binking skills. Olobal: Demonstrate the ability to make connections between concepts across General Chemistry. Draw the critical diagram and write the electron configuration for an element.				
Energe Levela			Global Demonstrate the all Explain how alomic spectra	Choose_ +			
Electron-Dot Formulas for Elements			Global Demonstrate the ability to think critically and employ critical thereary skills, Global Demonstrate the quantitative skills needed to succeed in General Chemistry. Write the electron configuration for an align uniting the soutiened tooks on the period tools.				
Problem 5.7	1		Compare the wavelength of	radiation with its energy.	Choose *		
Problem 3.74			Compare the wavelength o	Choose_ *			
Problem 5.1	12		Compare the wavelength o	radiation with its energy.	Choose_ •		
			Describe the sublevels and	orbitals in allows			

Instructor and Student Resources

Resource	Available in Print	Available Online	Instructor or Student Resource	Description
Selected Solutions Manual 0133889416/ 9780133889413	1		Student	Prepared by Kathy Shaginaw, the selected solutions manual for students contains complete, step-by-step solutions to selected odd-numbered, end-of-chapter problems.
Selected Solutions Manual, Books a la Carte Edition 013392825X/ 9780133928259	✓		Student	The selected solutions manual for students contains complete, step- by-step solutions to selected odd- numbered, end-of-chapter problems.
Instructor Resource Center 013389066X/ 9780133890662		•	Instructor	 This resource contains the following: All illustrations, tables, and photos from the text in JPEG format Three pre-built PowerPoint Presentations (lecture, worked examples, and images) TestGen computerized software with the TestGen version of the Testbank Word files of the Test Item File
Instructor Resource Manual 0133889394/ 9780133889390		1	Instructor	Organized by chapter, this useful guide prepared by Sandra Chimon- Peszek (<i>Calumet College of St. Joseph</i>), includes objectives, lecture outlines, references to figures and solved problems, as well as teaching tips.
Test Bank 0133890651/ 9780133890655		1	Instructor	The Test Bank, prepared by Anil Bangeree (Columbus State University), contains more than 2,200 multiple choice, true/false, and short-answer questions.
Solutions Manual 0133890678/ 9780133890679	1		Instructor	Prepared by Kathy Shaginaw, this manual contains step-by-step solutions to all end-of-chapter exercises. With instructor permission, this manual may be made available to students.

Matter, Measurement, and Problem Solving

Hemoglobin, the oxygen-carrying protein in blood (depicted schematically here), can bind carbon monoxide molecules (the linked red and black spheres) as well as oxygen. The most incomprehensible thing about the universe is that it is comprehensible.

—Albert Einstein (1879–1955)

HAT DO YOU THINK IS THE MOST important idea in all of human knowledge? There are, of course, many possible answers to this question—some practical, some philosophical, and some scientific. If we limit ourselves only to scientific answers, mine would be this: The properties of matter are determined by the properties of molecules and atoms. Atoms and molecules determine how matter behaves-if they were different, matter would be different. The properties of water molecules, for example, determine how water behaves; the properties of sugar molecules determine how sugar behaves; and the molecules that compose our bodies determine how our bodies behave. The

- 1.1 Atoms and Molecules 3
- **1.2** The Scientific Approach to Knowledge 5
- **1.3** The Classification of Matter 7
- 1.4 Physical and Chemical Changes and Physical and Chemical Properties 9
- 1.5 Energy: A Fundamental Part of Physical and Chemical Change 12
- **1.6** The Units of Measurement 13
- **1.7** The Reliability of a Measurement 19
- 1.8 Solving Chemical Problems 25

Key Learning Objectives 34

understanding of matter at the molecular level gives us unprecedented control over that matter. For example, our understanding of the details of the molecules that compose living organisms has revolutionized biology over the last 50 years.

1.1 Atoms and Molecules

The air over most U.S. cities, including my own, contains at least some pollution. A significant component of that pollution is carbon monoxide, a colorless gas emitted in the exhaust of cars and trucks. Carbon monoxide *gas* is composed of carbon monoxide *molecules*, each of which contains a carbon atom and an oxygen atom held together by a chemical bond. **Atoms** are the submicroscopic particles that constitute the fundamental building blocks of ordinary matter. However, free atoms are rare in nature; instead, they bind together in specific geometric arrangements to form **molecules**.

Hemoglobin, the oxygen-carrying molecule in red blood cells

tions and molecules

Carbon monoxide molecule

Carbon dioxide molecule

In the study of chemistry, atoms are often portrayed as colored spheres, with each color representing a different kind of atom. For example, a black sphere represents a carbon atom, a red sphere represents an oxygen atom, and a white sphere represents a hydrogen atom. For a complete color code of atoms, see Appendix IIA. The properties of the substances around us depend on the atoms and molecules that compose them, so the properties of carbon monoxide *gas* depend on the properties of carbon monoxide *molecules*. Carbon monoxide molecules happen to be just the right size and shape, and happen to have just the right chemical properties, to fit neatly into cavities within hemoglobin—the oxygen-carrying molecule in blood—that normally carry oxygen molecules (FIGURE 1.1^A). Consequently, carbon monoxide diminishes the oxygen-carrying capacity of blood. Breathing air containing too much carbon monoxide (greater than 0.04% by volume) can lead to unconsciousness and even death because not enough oxygen reaches the brain. Carbon monoxide deaths have occurred, for example, as a result of running an automobile in a closed garage or using a propane burner in an enclosed space for too long. In smaller amounts, carbon monoxide causes the heart and lungs to work harder and can result in headache, dizziness, weakness, and confusion.

▲ FIGURE 1.1 Binding of Oxygen and Carbon Monoxide to Hemoglobin Hemoglobin, a large protein molecule, is the oxygen carrier in red blood cells. Each subunit of the hemoglobin molecule contains

an iron atom to which oxygen binds. Carbon monoxide molecules can take the place of oxygen, thus

reducing the amount of oxygen reaching the body's tissues.

Cars and trucks emit a closely related molecule, called carbon dioxide, in far greater quantities than carbon monoxide. The only difference between carbon dioxide and carbon monoxide is that carbon dioxide molecules contain two oxygen atoms instead of just one. This extra oxygen atom dramatically affects the properties of the gas. We breathe much more carbon dioxide—which composes 0.04% of air and is a product of our own respiration as well—than carbon monoxide, yet it does not kill us. Why? Because the presence of the second oxygen atom prevents carbon dioxide from binding to the oxygen-carrying site in hemoglobin, making it far less toxic. Although high levels of carbon dioxide (greater than 10% of air) can be toxic for other reasons, lower levels can enter the bloodstream with no adverse effects. Such is the molecular world. Any differences between molecules—such as the presence of the extra oxygen atom in carbon dioxide compared to carbon monoxide—results in differences between the substances that the molecules compose.

As another example, consider two other closely related molecules, water and hydrogen peroxide:

A water molecule is composed of *one* oxygen atom and two hydrogen atoms. A hydrogen peroxide molecule is composed of *two* oxygen atoms and two hydrogen atoms. This seemingly small molecular difference results in a huge difference in the properties of water and hydrogen peroxide. Water is the familiar and stable liquid we all drink and bathe in. Hydrogen peroxide, in contrast, is an unstable liquid that, in its pure form, burns the skin on contact and is used in rocket fuel. When you pour water onto your hair, your hair simply becomes wet. However, if you put hydrogen peroxide in your hair—which you may have done if you have ever bleached your hair—a chemical reaction occurs that turns your hair blonde.

The details of how specific atoms bond to form a molecule—in a straight line, at a particular angle, in a ring, or in some other pattern—as well as the type of atoms in the molecule, determine everything about the substance that the molecule composes. If we want to understand the substances around us, we must understand the atoms and molecules that compose them—this is the central goal of chemistry. A good simple definition of **chemistry** is, therefore,

Chemistry—the science that seeks to understand the behavior of matter by studying the behavior of atoms and molecules.

1.2 The Scientific Approach to Knowledge

Scientific knowledge is *empirical*—it is based on *observation* and *experiment*. Scientists observe and perform experiments on the physical world to learn about it. Some observations and experiments are *qualitative* (noting or describing how a process happens), but many are *quantitative* (measuring or quantifying something about the process). For example, Antoine Lavoisier (1743–1794), a French chemist who studied combustion, made careful measurements of the mass of objects before and after burning them in closed containers. He noticed that there was no change in the total mass of material within the container during combustion. Lavoisier made an important observation about the physical world.

Observations often lead a scientist to formulate a **hypothesis**, a tentative interpretation or explanation of the observations. For example, Lavoisier explained his observations on combustion by hypothesizing that when a substance burns, it combines with a component of air. A good hypothesis is *falsifiable*, which means that it makes predictions that can be confirmed or refuted by further observations. Hypotheses are tested by **experiments**, highly controlled procedures designed to generate observations that can confirm or refute a hypothesis. The results of an experiment may support a hypothesis or prove it wrong. If it is proven wrong, the hypothesis must be modified or discarded.

In some cases, a series of similar observations can lead to the development of a **scientific law**, a brief statement that summarizes past observations and predicts future ones. For example, Lavoisier summarized his observations on combustion with the **law of conservation of mass**, which states, "In a chemical reaction, matter is neither created nor destroyed." This statement summarizes Lavoisier's observations on chemical reactions and predicts the outcome of future observations on reactions. Laws, like hypotheses, are also subject to experiments, which can add support to them or prove them wrong.

Scientific laws are not *laws* in the same sense as civil or governmental laws. Nature does not follow laws in the way that we obey the laws against speeding or running a red light. Rather, scientific laws *describe* how nature behaves—they are generalizations about what nature does. For that reason, some people find it more appropriate to refer to them as *principles* rather than laws.

One or more well-established hypotheses may form the basis for a scientific **theory**. A scientific theory is a model for the way nature is and tries to explain not merely what nature does, but why. As such, well-established theories are the pinnacle of scientific knowledge, often predicting behavior far beyond the observations or laws from which they were developed. A good example of a theory is the **atomic theory** proposed by English chemist John Dalton (1766–1844). Dalton explained the law of conservation of mass, as well as other laws and observations of the time, by proposing that matter is composed of small, indestructible particles called atoms. Since these particles merely rearrange in chemical changes (and do not form or vanish), the total amount of mass remains

The hydrogen peroxide used as an antiseptic or bleaching agent is considerably diluted.

▲ A painting of the French chemist Antoine Lavoisier. Lavoisier, who also made significant contributions to agriculture, industry, education, and government administration, was executed during the French Revolution.

In Dalton's time, atoms were thought to be indestructible. Today, because of nuclear reactions, we know that atoms can be broken apart into their smaller components.

The Scientific Approach to Knowledge

the same. Dalton's theory is a model for the physical world—it gives us insight into how nature works, and therefore *explains* our laws and observations.

Finally, the scientific approach returns to observation to test theories. For example, scientists can test the atomic theory by trying to isolate single atoms, or by trying to image them (both of which, by the way, have already been accomplished). Theories are validated by experiments; however, theories can never be conclusively proven because some new observation or experiment always has the potential to reveal a flaw. Notice that the scientific approach to knowledge begins with observation and ends with observation, because an experiment is simply a highly controlled procedure for generating critical observations designed to test a theory or hypothesis. Each new set of observations has the potential to refine the original model. FIGURE 1.2^A is one way to map the scientific approach to knowledge. Scientific laws, hypotheses, and theories are all subject to continued experimentation. If a law, hypothesis, or theory is proved wrong by an experiment, it must be revised and tested with new experiments. Over time, poor theories and laws are eliminated or corrected and good theories and laws—those consistent with experimental results—remain.

Established theories with strong experimental support are the most powerful pieces of scientific knowledge. You may have heard the phrase, "That is just a theory," as if theories are easily dismissible. Such a statement reveals a deep misunderstanding of the nature of a scientific theory. Well-established theories are as close to truth as we get in science. The idea that all matter is made of atoms is "just a theory," but it has over 200 years of experimental evidence to support it. It is a powerful piece of scientific knowledge on which many other scientific ideas have been built.

One last word about the scientific approach to knowledge: Some people wrongly imagine science to be a strict set of rules and procedures that automatically leads to inarguable, objective facts. This is not the case. Even the diagram of the scientific approach to knowledge in Figure 1.2 is only an idealization of real science, useful to help us see key distinctions. Doing real science requires hard work, care, creativity, and even a bit of luck. Scientific theories do not just fall out of data—they are crafted by men and women of great genius and creativity. A great theory is not unlike a master painting, and many see a similar kind of beauty in both.

CONCEPTUAL 1.1 LAWS AND THEORIES

You can find the answers to conceptual connection questions at the end of each chapter.

- Which statement best explains the difference between a law and a theory?
- (a) A law is truth, whereas a theory is mere speculation.
- (b) A law summarizes a series of related observations, whereas a theory gives the underlying reasons for them.
- (c) A theory describes *what* nature does, whereas a law describes *why* nature does it.

1.3 The Classification of Matter

Matter is anything that occupies space and has mass. This book, your desk, your chair, and even your body are all composed of matter. Less obviously, the air around you is also matter—it too occupies space and has mass. We often call a specific instance of matter—such as air, water, or sand—a **substance**. We classify matter according to its state—solid, liquid, or gas—and according to its composition.

The States of Matter: Solid, Liquid, and Gas

Matter exists in three different **states: solid**, **liquid**, and **gas**. In *solid matter*, atoms or molecules pack closely to each other in fixed locations. Although the atoms and molecules in a solid vibrate, they do not move around or past each other. Consequently, a solid has a fixed volume and rigid shape. Ice, aluminum, and diamond are examples of solids. Solid matter may be **crystalline**, in which case its atoms or molecules are arranged in patterns with long-range, repeating order (FIGURE 1.3>), or it may be **amorphous**, in which case its atoms or molecules do not have any long-range order. Examples of *crystalline* solids include table salt and diamond; the well-ordered geometric shapes of salt and diamond crystals reflect the well-ordered geometric arrangement of their atoms. Examples of *amorphous* solids include glass and most plastics.

In *liquid matter*, atoms or molecules pack about as closely as they do in solid matter, but are free to move relative to each other, giving liquids a fixed volume but not a fixed shape. Liquids assume the shape of their container. Water, alcohol, and gasoline are substances that are liquids at room temperature.

▲ In a solid, the atoms or molecules are fixed in place and can only vibrate. In a liquid, although the atoms or molecules are closely packed, they can move past one another, allowing the liquid to flow and assume the shape of its container. In a gas, the atoms or molecules are widely spaced, making gases compressible as well as fluid.

The state of matter changes from solid to liquid to gas with increasing temperature.

Crystalline: Regular 3-dimensional pattern

Diamond C (*s*, diamond)

▲ FIGURE 1.3 Crystalline Solids Diamond is a crystalline solid composed of carbon atoms arranged in a regular, repeating pattern.

▲ FIGURE 1.4 The Compressibility of Gases Gases can be compressed—squeezed into a smaller volume—because there is so much empty space between atoms or molecules in the gaseous state.

In gaseous matter, atoms or molecules have a lot of space between them and are free to move relative to one another, making gases *compressible* (FIGURE 1.4 <). When you squeeze a balloon or sit down on an air mattress, you force the atoms and molecules into a smaller space, so that they are closer together. Gases always assume the shape *and* volume of their container. Substances that are gases at room temperature include helium, nitrogen (the main component of air), and carbon dioxide.

Classifying Matter According to Its Composition: Elements, Compounds, and Mixtures

In addition to classifying matter according to its state, we can classify it according to its **composition**, that is, the kinds and amounts of substances that compose it. The following chart classifies matter according to its composition:

The first division in the classification of matter depends on whether or not its composition can vary from one sample to another. For example, the composition of distilled (or pure) water never varies—it is always 100% water and is therefore a **pure substance**, a substance composed of only a single type of atom or molecule. In contrast, the composition of sweetened tea can vary considerably from one sample to another, depending, for instance, on the strength of the tea or how much sugar has been added. Sweetened tea is an example of a **mixture**, a substance composed of two or more different types of atoms or molecules that can be combined in continuously variable proportions. We can categorize pure substances into two types—elements and compounds—depending on whether or not they can be broken down into simpler substances. The helium in a blimp or party balloon is an example of an **element**, a substance that cannot be chemically broken down into simpler substances. Water is an example of a **compound**, a substance composed of two or more elements (hydrogen and oxygen) in fixed, definite proportions. On Earth, compounds are more common than pure elements because most elements combine with other elements to form compounds.

We can also categorize mixtures into two types—heterogeneous and homogeneous depending on how uniformly the substances within them mix. Wet sand is an example of a **heterogeneous mixture**, one in which the composition varies from one region to another. Sweetened tea is an example of a **homogeneous mixture**, one with the same composition throughout. Homogeneous mixtures have uniform compositions because the atoms or molecules that compose them mix uniformly. Heterogeneous mixtures are made up of distinct regions because the atoms or molecules that compose them separate. Here again we see that the properties of matter are determined by the atoms or molecules that compose it.

PURE SUBSTANCES AND MIXTURES

Let a small circle represent an atom of one type of element and a small square represent an atom of a second type of element. Make a drawing of: (a) a pure substance composed of the two elements (in a one-to-one ratio); (b) a homogeneous mixture composed of the two elements; and (c) a heterogeneous mixture composed of the two elements.

1.4 Physical and Chemical Changes and Physical and Chemical Properties

Every day we witness changes in matter: ice melts, iron rusts, gasoline burns, fruit ripens, and water evaporates. What happens to the molecules that compose these samples of matter during such changes? The answer depends on the type of change. Changes that alter only state or appearance, but not composition, are **physical changes**. The atoms or molecules that compose a substance *do not change* their identity during a physical change. For example, when water boils, it changes its state from a liquid to a gas, but the gas remains composed of water molecules, which means that this is a physical change (FIGURE 1.5 \vee).

Water molecules change from liquid to gaseous state: physical change.

 $H_2O(g)$

All known elements are listed in the periodic table in the inside front cover of this book.

You can find the answers to conceptual connection questions at the end of each chapter.

FIGURE 1.5 Boiling, a Physical

Change When water boils, it turns into a gas but does not alter its chemical identity—the water molecules are the same in both the liquid and gaseous states. Boiling is a physical change, and the boiling point of water is a physical property.